Obesity predisposition traced to the brain's reward system

July 29, 2008

The tendency toward obesity is directly related to the brain system that is involved in food reward and addictive behaviors, according to a new study. Researchers at Tufts University School of Medicine (TUSM) and colleagues have demonstrated a link between a predisposition to obesity and defective dopamine signaling in the mesolimbic system in rats. Their report appears in the August 2008 issue of The FASEB Journal.

The mesolimbic system is a system of neurons in the brain that secretes dopamine, a neurotransmitter or chemical messenger, which mediates emotion and pleasure. The release of the neurotransmitter dopamine in the mesolimbic system is traditionally associated with euphoria and considered to be the major neurochemical signature of drug addiction.

"Baseline dopamine levels were 50 percent lower and stimulated dopamine release was significantly attenuated in the brain reward systems of obesity-prone rats, compared with obesity-resistant rats. Defects in brain dopamine synthesis and release were evident in rats immediately after birth," said Emmanuel Pothos, PhD, assistant professor in the department of pharmacology and experimental therapeutics at TUSM and member of the neuroscience program faculty of the Sackler School of Graduate Biomedical Sciences.

"Previous research has demonstrated that food intake leads to an increase in the release of dopamine, in the circuits that mediate the pleasurable aspects of eating," Pothos explains. "Also, chronic food deprivation resulting in decreased body weight leads to decreased dopamine levels. Therefore, increased food intake may represent a compensatory attempt to restore baseline dopamine levels."

Pothos says, "These findings have important implications in our understanding of the obesity epidemic. The notion that decreased dopamine signaling leads to increased feeding is compatible with the finding from human studies that obese individuals have reduced central dopamine receptors." He speculates that an attenuated dopamine signal may interfere with satiation, leading to overeating.

Pothos and colleagues conducted their research using obesity-prone and obesity-resistant rats. Adult obesity-prone rats consumed more food and were 20% heavier than obesity-resistant rats.

The researchers measured electrically-evoked dopamine release from nerve terminals. "We also measured regulators of dopamine synthesis and release in midbrain dopamine pathways," explains Brenda Geiger, first author and graduate student in the pharmacology and experimental therapeutics department at TUSM. "Our molecular analysis suggests that the central dopamine deficits are most likely caused by reduced expression of the genes encoding two proteins, one that is involved in dopamine synthesis, and another that is a transporter responsible for packaging dopamine into vesicles from which it is later released upon stimulation."

"Obesity has so far been approached mostly as a metabolic rather than as an addictive disorder; and obesity research has primarily focused on brain systems that regulate body weight through the maintenance of energy balance. The current study challenges this approach by focusing on brain pathways implicated in pleasure and reward. These pathways could override energy balance and induce hyperphagia and obesity by altering the reward value of food, particularly palatable high-energy food, very early in life," says Pothos, who is the study's corresponding and senior author.

According to Gerald Weissmann, MD, editor-in-chief of The FASEB Journal, "Now we know why so many people stay addicted to food: it fuels the mid-brain pleasure machinery. We eat not only for nourishment, but also for pleasure. This study provides the molecular link between eating and mental health." The FASEB Journal (www.fasebj.org>) is published by the Federation of American Societies for Experimental Biology (FASEB).

Source: Tufts University

Explore further: The real reason some people become addicted to drugs

Related Stories

The real reason some people become addicted to drugs

October 2, 2017
Why do they do it? This is a question that friends and families often ask of those who are addicted.

Sugar in the diet may increase risks of opioid addiction

October 16, 2017
Could a diet high in refined sugars make children and adults more susceptible to opioid addiction and overdose? New research, from our laboratory of behavioral neuroscience at the University of Guelph, suggests it could.

Feeding hormone ghrelin modulates ability of rewarding food to evoke dopamine release

July 12, 2011
New research findings to be presented at the upcoming annual meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, finds that ...

Socially isolated rats are more vulnerable to addiction, report researchers

January 23, 2013
Rats that are socially isolated during a critical period of adolescence are more vulnerable to addiction to amphetamine and alcohol, found researchers at The University of Texas at Austin. Amphetamine addiction is also harder ...

Researchers unlock mechanisms in the brain that separate food consumption from cravings

March 8, 2016
Researchers investigating eating disorders often study chemical and neurological functions in the brain to discover clues to overeating. Understanding non-homeostatic eating—or eating that is driven more by palatability, ...

New theory integrates dopamine's role in learning, motivation

November 24, 2015
If you've ever felt lackadaisical to start a new project, focus on imagining the joy of completing it, say University of Michigan researchers.

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.