Scientists deliver toxic genes to effectively kill pancreatic cancer cells

September 23, 2008,

A research team, led by investigators at the Department of Surgery at Jefferson Medical College of Thomas Jefferson University and the Kimmel Cancer Center at Jefferson, has achieved a substantial "kill" of pancreatic cancer cells by using nanoparticles to successfully deliver a deadly diphtheria toxin gene. The findings – set to be published in the October issue of Cancer Biology & Therapy – reflect the first time this unique strategy has been tested in pancreatic cancer cells, and the success seen offers promise for future pre-clinical animal studies, and possibly, a new clinical approach.

The researchers found that delivery of a diphtheria toxin gene inhibited a basic function of pancreatic tumor cells by over 95 percent, resulting in significant cell death of pancreatic cancer cells six days after a single treatment. They also demonstrated that the treatment targets only pancreatic cancer cells and leaves normal cells alone, thus providing a potential 'therapeutic window.' Further, they are targeting a molecule that is found in over three-quarters of pancreatic cancer patients.

"For the pancreatic cancer world, this is very exciting," says the study's lead author, molecular biologist Jonathan Brody, Ph.D., assistant professor, Department of Surgery at Jefferson Medical College of Thomas Jefferson University, who works closely with the Samuel D. Gross Professor and Surgeon, Charles J. Yeo, M.D. "There are no effective targeted treatments for pancreatic cancer, aside from surgery for which only a minority of patients qualify. We are in great need of translating the plethora of molecular information we know about this disease to novel therapeutic ideas."

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the U.S., reflecting the generally short survival time of patients - often less than a year from diagnosis.

This approach was originally developed in ovarian cancer cells by study co-author Janet Sawicki, Ph.D., a member of the Kimmel Cancer Center, and professor at the Lankenau Institute for Medical Research in Wynnewood, Pennsylvania. She and her group had recent success in reducing the size of ovarian tumors following treatment with diphtheria toxin nanoparticles.

The strategy is based on the fact that both ovarian and pancreatic cancer cells significantly over-express a protein found on the cell membrane, called mesothelin. The function of that molecule is unknown, but it is found in the majority of pancreatic tumors and ovarian cancer tumors. Other solid tumors also express mesothelin, but not at such a high rate.

"We don't know completely why cancer cells repeatedly turn on mesothelin genes to produce these membrane proteins, but it gives us a way to fool the cell and hijack its machinery, to trick it into making other more potent genes that will be detrimental to the cancer cells," Brody says.

To do that, the researchers devised an agent that consists of a bit of mesothelin DNA connected to the gene that produces the toxin from diphtheria, a highly contagious and potentially deadly bacteria, which is now controlled through childhood DPT vaccination. "Naked" DNA is then coated in a polymer to form nanoparticles that are taken up by the cancer cells.

Inside the cells, the agent performs its trickery. The nanoparticles biodegrade and the cell machinery senses genetic material from mesothelin. It activates the diphtheria toxin gene, which then turns on production of the toxin which allows the toxin to then do its work on the cancer cells, Brody says. Within 24 hours of delivery, the toxin disrupted production of protein machinery by over 95 percent, and within six days, a number of cancer cells die or are arrested.

"The cancer thinks it is turning on mesothelin and once it gets started reading that genetic code, it can't stop," he says. "So it will read the bacteria's DNA and produce the toxin which shuts down protein production in the cancer cells."

"It worked well in our cell culture models and now we are moving into pre-clinical experiments," Brody says.

The agent will not attack normal cells because the molecular machinery needed to turn on mesothelin is not found in normal cells, Brody says. Additionally, Sawicki has modified the diphtheria DNA to ensure that toxin that might be released from dying cancer cells is not taken up by healthy, normal cells.

But the researchers are now perfecting even more stringent measures to ensure safety, he says. "We can't help being hopeful," he says. "Our findings suggest that such a strategy will work in the clinical setting against the majority of pancreatic tumors."

Source: Thomas Jefferson University

Explore further: Pancreatic cancer accelerated by stress, finds study

Related Stories

Pancreatic cancer accelerated by stress, finds study

January 10, 2018
A new study shows that stress accelerates the development of pancreatic cancer by triggering the release of "fight-or-flight" hormones. Beta-blockers—commonly used medications that inhibit these hormones—were found to ...

Researchers demonstrate RAS dimers are essential for cancer

January 11, 2018
Mutated RAS genes are some of the most common genetic drivers of cancer, especially in aggressive cancers like pancreatic and lung cancer, but no medicines that target RAS are available despite decades of effort.

Novel diabetes drugs sensitize cancer cells to chemotherapy agents

January 2, 2018
Scientists at Dana-Farber Cancer Institute have shown that experimental diabetes drugs can make cancer cells more vulnerable to traditional chemotherapy agents, and they say such combinations should be explored to potentially ...

Novel nanomedicine inhibits progression of pancreatic cancer in mice

January 2, 2018
A new Tel Aviv University study pinpoints the inverse correlation between a known oncogene—a gene that promotes the development of cancer—and the expression of an oncosuppressor microRNA as the reason for extended pancreatic ...

More tumor mutations equals higher success rate with cancer immunotherapy drugs

December 21, 2017
The mutational burden, or the number of mutations present in a tumors DNA, is a good predictor of whether that cancer type will respond to a class of cancer immunotherapy drugs known as checkpoint inhibitors, a new study ...

Overlooked immune cells hold breakthrough for treating aggressive cancers

December 20, 2017
The latest generation of cancer treatments spring from the discovery that the human immune system is able to beat the disease. Like Dorothy in "The Wizard of Oz," what research teams around the world have spent decades searching ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.