New class of antibiotics may lead to therapy for drug-resistant tuberculosis

October 16, 2008,

A team of Rutgers University scientists led by Richard H. Ebright and Eddy Arnold has identified a new antibiotic target and a new antibiotic mechanism that may enable the development of broad-spectrum antibacterial agents effective against bacterial pathogens resistant to current antibiotics. In particular, the results could lead the way to new treatments for tuberculosis (TB) that involve shorter courses of therapy and are effective against drug-resistant TB.

The researchers showed how three antibiotics – myxopyronin, corallopyronin and ripostatin – block the action of bacterial RNA polymerase (RNAP). RNAP is the enzyme that transcribes genetic information from DNA into RNA, which, in turn, directs the assembly of proteins, the building blocks of all biological systems. Blocking bacterial RNAP kills bacterial cells.

The research findings are reported in the journal Cell, published online Oct. 16 and in the Oct. 17 print issue of the journal.

The shape of the RNAP molecule is key to the action of the three antibiotics, Ebright explained. "RNAP has a shape reminiscent of a crab claw, with two prominent pincer-like projections," he said. "Just as with a real crab claw, one pincer stays fixed and one pincer moves – opening to allow DNA into the enzyme and closing to keep DNA in the enzyme. The pincer that moves does so by rotating about a hinge, termed the 'switch region,' located at its base."

The studies showed that the three antibiotics bind to this hinge and, further, that by jamming the hinge, they prevent the pincer from opening to let DNA into the enzyme, Ebright said.

Once the target and mechanism of the three antibiotics were elucidated, the researchers proceeded to determine the structure of RNAP bound to one of the three antibiotics. "This has allowed us to define how the enzyme and the antibiotic interact and to characterize how the enzyme changes shape in response to the antibiotic," Arnold said. "Perhaps more important, this has allowed us to explore ways to change the chemical structure of the antibiotic to make tighter interactions with the enzyme for higher potency."

The three antibiotics exhibit potent activity against a broad spectrum of bacterial species, including the bacterium that causes TB, and exhibit no cross resistance with current antibacterial agents.

"The three antibiotics are attractive candidates for development as broad spectrum antibacterial agents," Ebright said, "and their target within RNAP – the hinge or 'switch region' – is an attractive target for identification of new broad-spectrum antibacterial therapeutic agents."

Arnold points out that the binding site for the three antibiotics has attractive features for design of new agents. "The target site is a pocket that accommodates a variety of chemical types. The nature of the binding site and mechanism of inhibition are analogous to those of the HIV-1 reverse transcriptase non-nucleoside inhibitors, which include four FDA-approved drugs for treating HIV-1 infections. The parallels are encouraging and suggest that multiple classes of agents can be developed to target the new site."

Ebright, a Howard Hughes Medical Institute investigator, is a professor in the Department of Chemistry and Chemical Biology and a member of the Waksman Institute of Microbiology at Rutgers, The State University of New Jersey. Arnold, also a professor of chemistry and chemical biology, is a member of the Center for Advanced Biotechnology and Medicine (CABM), jointly operated by Rutgers and the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School.

Jayanta Mukhopadhyay from Ebright's laboratory and Kalyan Das from Arnold's laboratory carried out much of the work.

The research team also included Rolf Jansen and Herbert Irschik of the Helmholtz Center for Infection Research in Braunschweig, Germany.

Most antibacterial compounds are able to kill actively growing TB bacteria but are unable to kill resting, dormant TB bacteria. As a result, most antibacterial compounds can rapidly reduce populations of TB bacteria in infected patients to low numbers but cannot rapidly reduce these numbers to zero. Antibacterial compounds that target RNAP, however, are able to kill both active and dormant TB bacteria since RNAP plays essential roles in, and is required for survival of, both active and dormant TB bacteria.

A class of antibacterial compounds known as rifamycins, which target RNAP, are current first-line treatment of TB and are the sole current treatments that can relatively rapidly reduce populations of TB bacteria to zero. Unfortunately, rifamycins are too toxic to administer at doses that most rapidly clear infection. Also, resistance to rifamycins occurs frequently, due to mutations that alter their binding site on RNAP.

The three antibiotics studied by Ebright and co-workers also target RNAP; however, they target a new site on RNAP, different from the site on RNAP targeted by rifamycins. "A key point about these antibiotics is that their binding site on RNAP is different from, and does not overlap with, the binding site for rifamycins," Ebright said. "As a result, these antibiotics can function simultaneously with rifamycins and can be co-administered with rifamycins for more rapid clearance of infection. As a further result, these antibiotics do not exhibit cross-resistance with rifamycins. Mutations that alter the binding site for rifamycins on RNAP and confer resistance to rifamycins do not confer resistance to these antibiotics.

The standard course of therapy for most bacterial infections is about two weeks, but TB is different. The shortest course of therapy for TB is six to nine months. "That is, if you can use rifamycins," Ebright notes. "If you have a patient who cannot tolerate rifamycins, or if you have a patient whose infection is resistant to rifamycins, that patient is looking at 18 to 24 months of therapy."

"The Holy Grail in TB therapy is to reduce the course of therapy from six months to two weeks – to make treatment of TB like treatment of other bacterial infections," Ebright said. "If you could develop a two-week therapy for TB, you could eradicate TB. With a six-month course of therapy for a disease that is largely centered in the third world, the logistical problems of administering therapy over space and time make eradication a nonstarter. But if there were a two-week course of therapy, the logistics would be manageable, and the disease would be eradicated."

The hope is that the new findings will bring that goal closer.

Source: Rutgers University

Explore further: Alternative therapies for mild infections could help combat antibiotic resistance

Related Stories

Alternative therapies for mild infections could help combat antibiotic resistance

December 29, 2017
Got a sore throat? The doctor may write a quick prescription for penicillin or amoxicillin, and with the stroke of a pen, help diminish public health and your own future health by helping bacteria evolve resistance to antibiotics.

A new test to measure the effectiveness of CF drugs

November 16, 2017
UNC School of Medicine researchers have developed a new laboratory model of the infection- and inflammation-plagued airways of cystic fibrosis (CF) patients. The model, described in the American Journal of Respiratory and ...

Researchers take a new step towards non-antibiotic bladder infection therapies

September 22, 2016
A cross-border team of scientists has gained fresh insight into the development of bladder infections, also known as cystitis. These findings are the result of a close collaboration between Belgian researchers from VIB-Vrije ...

Treatment of severe acne hampered by antibiotic overuse and delays in prescribing more potent medication

October 30, 2015
A medical records analysis by researchers at NYU Langone Medical Center concludes that physicians who treat severe acne leave too many patients on ineffective antibiotics for far too long before prescribing more potent needed ...

Infant's prolonged infection reveals mutation that helps bacteria tolerate antibiotics

January 3, 2017
The quest to understand a prolonged infection in an infant being treated for leukemia has led to the St. Jude Children's Research Hospital discovery of a mutation that allows bacteria to tolerate normally effective antibiotic ...

Research suggests the consequences of overuse of antibiotics is now reaching the Amazon

February 19, 2013
A major review recently published in Frontiers of Microbiology examines the broader issues associated with widespread antibiotic resistance. The paper, by Professor Michael Gillings from Macquarie University, discussed the ...

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.