Device could filter cancer cells from blood

December 11, 2008,
A schematic of the two-receptor cancer neutralization concept. Cancer cells present in blood stick and roll on the selectins on the surface of the device. While rolling they bind to TRAIL and accumulate the self-destruct signal. Once they detach from the surface and leave the device, they will die 1-2 days later. Image: Kuldeep Rana

( -- In a new tactic in the fight against cancer, Cornell researcher Michael King has developed what he calls a lethal "lint brush" for the blood -- a tiny, implantable device that captures and kills cancer cells in the bloodstream before they spread through the body.

The strategy, which takes advantage of the body's natural mechanism for fighting infection, could lead to new treatments for a variety of cancers, said King, who is an associate professor of biomedical engineering.

A version of the device used in King's experiments. In the body, the inlet and outlet would connect to an artery and vein, respectively. (In the published experiments the device was connected to a cell suspension and a syringe pump.) Image: Kuldeep Rana

In research conducted at the University of Rochester and to be published in an upcoming issue of the journal Biotechnology and Bioengineering, King showed that two naturally occurring proteins can work together to attract and kill as many as 30 percent of tumor cells in the bloodstream -- without harming healthy cells.

King's approach uses a tiny tubelike device coated with the proteins that could hypothetically be implanted in a peripheral blood vessel to filter out and destroy free-flowing cancer cells in the bloodstream.

To capture the tumor cells in the blood, King used selectin molecules -- proteins that move to the surface of blood vessels in response to infection or injury. Selectin molecules normally recruit white blood cells (leukocytes) which "roll" along their surfaces and create an inflammatory response -- but they also attract cancer cells, which can mimic the adhesion and rolling process.

Once the cancer cells adhered to the selectin on the microtube's surface, King exposed them to a protein called TRAIL (for Tumor Necrosis Factor Related Apoptosis-Inducing Ligand), which binds to two so-called "death receptors" on the cancer cells' surface, setting in motion a process that causes the cell to self-destruct.

The TRAIL then releases the cells back into the bloodstream to die; and the device is left free to work on new cells.

"It's a little more sophisticated than just filtering the blood, because we're not just accumulating cancer cells on the surface," King said.

King's research showed that the device can capture and kill about 30 percent of cancer cells flowing past it a single time, with the potential to kill more in the closed-loop system of the body. Used in combination with traditional cancer therapies, King said, the device could remove a significant proportion of metastatic cells, "and give the body a fighting chance to remove the rest of them."

The team also showed that a system in which the cancer cells "roll" over the target molecules - presenting their entire surface to the molecules - is four times more effective than a static setup in which the cells and proteins make contact at a single point.

King's group tested the device on prostate and colon cancer cells, but noted that it could also be customized with additional peptides or other proteins to target other types of cancer cells. "And if you could reduce or prevent metastasis, pretty much any cancer would be treatable," he said.

But translating the research into a clinical application will take time, he added, and is still likely years away.

"The actual physical device, when it gets eventually tested in humans, will probably look a lot like an arteriovenous shunt [a small tube, or shunt, that diverts blood flow] with our protein coating," he said.

"This has never been tried before. It's a whole new way of approaching cancer treatment," he added. "There's a lot of work yet to be done, of course, before this actually helps people -- but this is how it starts."

Other authors on the paper include Kuldeep Rana, a Cornell Ph.D. student, and Jane Liesveld, M.D., a clinician at the University of Rochester. The research was funded by New York state and the National Cancer Institute.

Provided by Cornell University

Explore further: Area surrounding a tumor impacts how breast cancer cells grow

Related Stories

Area surrounding a tumor impacts how breast cancer cells grow

March 14, 2018
Cancer is typically thought of as a tumor that needs to be removed or an area that needs to be treated with radiation or chemotherapy. As a physicist and cancer researcher, Joe Gray, Ph.D., thinks differently.

Microfluidic device captures, allows analysis of tumor-specific extracellular vesicles

February 27, 2018
A new microfluidic device developed by investigators at Massachusetts General Hospital (MGH) may help realize the potential of tumor-derived extracellular vesicles (EVs) - tiny lipid particles that carry molecules through ...

3-D-written model to provide better understanding of cancer spread

March 1, 2018
Purdue researcher Luis Solorio has helped create a lifelike cancer environment out of polymer to better predict how drugs might stop its course.

Scientists map, track breakaway cancerous cells with metal detection

February 27, 2018
Metal detection has helped mining companies strike gold and airport security identify passengers who are a potential threat. Now USC scientists have pushed its use into another realm: studying cancer.

Enabling technology for emerging gene therapies

February 27, 2018
For years, researchers have attempted to harness the full potential of gene therapy, a technique that inserts genes into a patient's cells to treat aggressive diseases such as cancer. But getting engineered DNA molecules ...

Never too late to operate? Surgery near end of life is common, costly

March 5, 2018
At 87, Maxine Stanich cared more about improving the quality of her life than prolonging it.

Recommended for you

Metastatic lymph nodes can be the source of distant metastases in mouse models of cancer

March 22, 2018
A study by Massachusetts General Hospital (MGH) investigators finds that, in mouse models, cancer cells from metastatic lymph nodes can escape into the circulation by invading nodal blood vessels, leading to the development ...

Could a pap test spot more than just cervical cancer?

March 22, 2018
Pap tests have helped drive down rates of cervical cancer, and a new study suggests they also could be used to detect other gynecologic cancers early.

Gene-based test for urine detects, monitors bladder cancer

March 22, 2018
Researchers at The Johns Hopkins Kimmel Cancer Center have developed a test for urine, gathered during a routine procedure, to detect DNA mutations identified with urothelial cancers.

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Researchers examine role of fluid flow in ovarian cancer progression

March 22, 2018
New research from Virginia Tech is moving physicians closer to pinpointing a predictor of ovarian cancer, which could lead to earlier diagnosis of what is know as the "silent killer."

Probing RNA epigenetics and chromatin structures to predict drug resistance in leukemia

March 22, 2018
Drug resistance is a major obstacle to effective treatment for patients with cancer and leukemia. Epigenetic modifying drugs have been proven effective for some patients with hematologic malignancies, such as myelodysplastic ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 12, 2008
Little information. How to identify?, etc? All cells undergoing mitosis? Electric potential?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.