Researchers find molecule that targets brain tumors

December 29, 2008

UC Davis Cancer Center researchers report today the discovery of a molecule that targets glioblastoma, a highly deadly form of cancer. The finding, which is published in the January 2009 issue of the European Journal of Nuclear Medicine and Molecular Imaging, provides hope for effectively treating an incurable cancer.

Glioblastoma is the most common and aggressive type of primary brain tumor in adults. It is marked by tumors with irregular shapes and poorly defined borders that rapidly invade neighboring tissues, making them difficult to remove surgically.

"These brain tumors are currently treated with surgery to remove as much of the tumor as possible followed by radiation to kill cancer cells left behind and systemic chemotherapy to prevent spread to nearby tissues," said Kit Lam, senior author of the study and UC Davis chief of hematology and oncology. "It is unfortunate that this approach does not extend survival significantly. Most patients survive less than one year."

To find new options for treating the disease, Lam and his colleagues began searching for a molecule that could be injected into a patient's bloodstream and deliver high concentrations of medication or radionuclides directly to brain tumor cells while sparing normal tissues. Through their study, they identified a molecule — called LXY1 — that binds with high specificity to a particular cell-surface protein called alpha-3 integrin, which is overexpressed on cancer cells.

They also tested the molecule's ability to target brain cancer by implanting human glioblastoma cells both beneath the skin and in the brains of mice. The researchers injected the mice with a radiolabeled version of LXY1 and, using near-infrared fluorescence imaging, showed that the molecule did preferentially bind to human glioblastoma cells in both locations.

"This outcome gives us great hope that we will be able to deliver targeted therapies to treat glioblastoma," said Lam.

Lam is planning to continue this work by repeating the experiments with powerful cancer treatments linked to the LXY1 molecule. They will begin with iodine-131, a form of radionuclide currently used to treat some cancers, as well as a nanoparticle, or "smart bomb," that would carry cancer-fighting drugs to diseased cells.

Source: University of California - Davis

Explore further: End of ageing and cancer? Scientists unveil structure of the 'immortality' enzyme telomerase

Related Stories

End of ageing and cancer? Scientists unveil structure of the 'immortality' enzyme telomerase

April 26, 2018
Making a drug is like trying to pick a lock at the molecular level. There are two ways in which you can proceed. You can try thousands of different keys at random, hopefully finding one that fits. The pharmaceutical industry ...

Removing the enablers: Reducing number of tumor-supporting cells to fight neuroblastoma

April 24, 2018
Investigators at the Children's Center for Cancer and Blood Diseases at Children's Hospital Los Angeles provide preclinical evidence that the presence of tumor-associated macrophages—a type of immune cell—can negatively ...

Targeting molecules called miR-200s and ADAR2 could prevent tumor metastasis in patients with colorectal cancer

April 24, 2018
Colorectal cancer is the third most common cancer worldwide and the third-leading cause of cancer-related deaths. The main cause of death in patients with colorectal cancer is liver metastasis, with nearly 70% of patients ...

Vitamin C as a treatment for cancer—the evidence so far

April 25, 2018
If a headline says research shows a diet rich in a food 'could help fight cancer' then our advice would be to read on with a critical eye.

How to hijack degrading complexes to put cancer cells asleep

April 23, 2018
Newcastle and Dundee University researchers have uncovered an alternative path of how the breast cancer drug palbociclib drives malignant cells into cell death, senescence.

Scientists create better laboratory tools to study cancer's spread

April 23, 2018
Cancer that has spread, or metastasized, from its original site to other tissues and organs in the body is a leading cause of cancer death. Unfortunately, research focused on metastatic disease has been limited by a lack ...

Recommended for you

The complicated biology of garlic

April 26, 2018
Researchers today generally agree that eating garlic, used for thousands of years to treat human disease, can reduce the risk of developing certain kinds of cancers, cardiovascular disease, and type 2 diabetes. Nevertheless, ...

CRISPR-based diagnostic SHERLOCK optimized for rapid use during viral outbreaks

April 26, 2018
In a paper published today in Science, researchers at Broad Institute of MIT and Harvard report a new tool that engineers the CRISPR-based diagnostic SHERLOCK for rapid outbreak response. The updates to SHERLOCK, which was ...

Noninvasive brain tumor biopsy on the horizon

April 26, 2018
Taking a biopsy of a brain tumor is a complicated and invasive surgical process, but a team of researchers at Washington University in St. Louis is developing a way that allows them to detect tumor biomarkers through a simple ...

Lab-on-a-chip delivers critical immunity data for vulnerable populations

April 25, 2018
For millions of displaced people around the world—many of them refugees, living in temporary shelters under crowded conditions—an outbreak of disease is devastating. Each year, the measles virus kills more than 134,000 ...

Want new medicines? You need fundamental research

April 25, 2018
Would we be wise to prioritize "shovel-ready" science over curiosity-driven, fundamental research programs? Would that set the stage for the discovery of more new medicines over the long term?

Implantable islet cells come with their own oxygen supply

April 25, 2018
Since the 1960s, researchers have been interested in the possibility of treating type 1 diabetes by transplanting islet cells—the pancreatic cells that are responsible for producing insulin when blood glucose concentration ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Dec 29, 2008
I think you would get better results with a cool water drip! It's the ENERGY you want to limit, not the number of rapidly mitosising cells!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.