Well-armed immune cells help long-term non-progressors contain HIV

December 4, 2008

To help develop an effective HIV vaccine, researchers are trying to better understand how the immune systems of a small minority of HIV-infected people known as long-term non-progressors (LTNPs) contain the virus naturally. CD8+ T cells, which kill cells infected with HIV, enable LTNPs to control HIV, but it has been unclear how CD8+ T cells mediate that control so effectively. A new report shows that the ability to stockpile two molecular weapons makes the HIV-specific CD8+ T cells of LTNPs superior cellular killers.

Lead author Stephen Migueles, M.D., senior author Mark Connors, M.D., and colleagues at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, used cutting-edge technology to examine individual CD8+ T cells for their killing prowess.

The study included new techniques to measure how many HIV-infected cells each CD8+ T cell destroys, and how rapidly. In laboratory experiments, the scientists found that CD8+ T cells taken from LTNPs efficiently killed HIV-infected cells in less than 1 hour. In contrast, the CD8+ T cells of progressors, or individuals who do not contain the virus without antiretroviral therapy, killed HIV-infected cells inefficiently, even when the CD8+ T cells were present in high numbers or came from progressors being successfully treated with antiretroviral therapy.

When CD8+ T cells kill HIV-infected cells, a protein, perforin, made by the CD8+ T cells punches holes in the infected cells. Then a second protein, granzyme B, penetrates those holes and causes the cells to die. Previously, the researchers found that HIV-specific CD8+ T cells of progressors, unlike those of LTNPs, make little perforin when they encounter an HIV-infected cell. It remained unclear, however, whether this deficiency explained why HIV-specific CD8+ T cells of progressors are poor killers.

The current study demonstrates a direct relationship between the quantity of both perforin and granzyme B that CD8+ T cells accumulate over time and the ability of CD8+ T cells to eliminate HIV-infected cells. This discovery significantly advances the understanding of the cellular mechanisms unique to LTNPs that explain why their immune systems, unlike those of the majority of HIV-infected people, can control HIV without antiretroviral therapy.

According to the NIAID scientists, their results also suggest that an HIV vaccine might control virus replication if it could stimulate HIV-specific CD8+ T cells to robustly stock and rapidly deliver perforin and granzyme B to HIV-infected cells.

Publication: SA Migueles et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity DOI 10.1016/j.immuni.2008.10.010 (2008).

Source: National Institute of Allergy and Infectious Diseases

Related Stories

Recommended for you

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

A sixth of new HIV patients in Europe 50 or older: study

September 27, 2017
People aged 50 and older comprise a growing percentage of HIV patients in Europe, accounting for one in six new cases in 2015, researchers said Wednesday.

Three-in-one antibody protects monkeys from HIV-like virus

September 20, 2017
A three-pronged antibody made in the laboratory protected monkeys from infection with two strains of SHIV, a monkey form of HIV, better than individual natural antibodies from which the engineered antibody is derived, researchers ...

Fighting HIV on multiple fronts might lead to vaccine

September 20, 2017
A combination antibody strategy could be the key to halting the spread of HIV, according to results from two promising animal studies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.