Transforming medical diagnosis with new scanning technology

March 26, 2009

A new technology which dramatically improves the sensitivity of Magnetic Resonance techniques including those used in hospital scanners and chemistry laboratories has been developed by scientists at the University of York.

Ultimately, the technique, based on manipulating parahydrogen, the fuel of the space shuttle, is expected to allow doctors to learn far more about a patient's condition from an MRI scan at lower cost while increasing the range of medical conditions that can be examined.

The research is published in the latest edition of the journal Science.

Researchers have taken parahydrogen and, through a reversible interaction with a specially designed molecular scaffold, transferred its magnetism to a range of molecules. The resulting molecules are much more easily detected than was previously possible. No-one has been able to use parahydrogen in this way before.

Professor Gary Green, from the Department of Psychology and Director of the York Neuroimaging Centre, said: "Our method has the potential to help doctors make faster and more accurate diagnoses in a wide range of medical conditions.

"The technique could ultimately replace current clinical imaging technologies that depend on the use of radioactive substances or heavy metals, which themselves create health concerns."

The new method will also have major implications for scientific research because it radically reduces the time taken to obtain results using Nuclear Magnetic Resonance technology, the most popular method for obtaining analytical and structural information in chemistry.

Professor Simon Duckett, from the University's Department of Chemistry and Director of the Centre for Magnetic Resonance, said: "We have been able to increase sensitivity in NMR by over 1000 times so data that once took 90 days to record can now be obtained in just five seconds. Similarly, an MRI image can now be collected in a fraction of a second rather than over 100 hours.

"This development opens up the possibility of using NMR techniques to better understand the fundamental functions of biological systems."

Professor Ian Greer, Dean of the Hull York Medical School, said: "This technological advance has the potential to revolutionise the accessibility and application of high quality medical imaging to patients. It will bring significant to benefits to diagnosis and treatment in virtually all areas of medicine and surgery, ranging from cancer diagnosis to orthopaedics and trauma. It illustrates the enormous success of combining high quality basic science with clinical application."

Bruker BioSpin has been one of the first collaborators in developing this technology for commercial use. Dr Tonio Gianotti, Director and International NMR Research and Development Co-ordinator for Bruker BioSpin, said: "This technology has the potential to revolutionise both NMR and MRI methods in a short space of time."

Dr Mark Mortimer, Director of the University's Research and Enterprise Office, said: "The rapid development of this research from the chemistry bench through to measurement opens up many exciting possibilities to extend this work. The York research team are now seeking partners to help turn this groundbreaking research into commercial and medical applications."

Source: University of York

Related Stories

Recommended for you

Fruit fly study identifies new gene linked to aortic aneurysms

April 24, 2018
An interdisciplinary team of researchers has identified a new gene linked to human aortic aneurysms. By combining comprehensive genetic studies in the fruit fly, dataset searches and analysis of diseased human aortic tissue, ...

Scientists manipulate 'satellite cells' to speed healing

April 24, 2018
Muscle aches and pains, whether from stretching, strenuous exercise or just normal wear and tear, can put a crimp in your day, a limp in your step and be an actual pain in the neck. But no matter the severity, stem cells ...

Advanced sensor to unlock the secrets of the brain

April 24, 2018
Researchers have announced the development of a state-of-the-art sensor that can for the first time detect signalling molecules, called cytokines, which operate in the living brain. Cytokines in the brain are secreted by ...

New cell therapy aids heart recovery—without implanting cells

April 23, 2018
Heart disease is a major global health problem—myocardial infarction annually affects more than one million people in the U.S. alone, and there is still no effective treatment. The adult human heart cannot regenerate itself ...

DOR protein deficiency favors the development of obesity

April 20, 2018
Obesity is a world health problem. Excessive accumulation of fat tissue (adipose tissue) increases the risk of cardiovascular disease, hypertension, diabetes and some types of cancer. However, some obese individuals are less ...

Stem-cell technology aids 3-D printed cartilage repair

April 20, 2018
Novel stem-cell technology developed at Swinburne will be used to grow the massive number of stem cells required for a new hand-held 3-D printer that will enable surgeons to create patient-specific bone and cartilage.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Mar 31, 2009
Please turn your cell phones off !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.