Fat-derived inflammatory factor may explain diseases that come with obesity

April 7, 2009,

An inflammatory factor already linked to several diseases, including pulmonary disease, lung cancer, and arthritis, may also be responsible for the insulin resistance that comes with obesity, according to a new study published in the April issue of Cell Metabolism, a Cell Press publication.

Researchers have found that the inflammatory chemokine known as CXCL5 rises and falls with obesity and subsequent weight loss in humans. (Chemokines are structurally related signaling proteins that are secreted by cells.) They found further evidence tying the inflammatory factor, which is produced and secreted at high levels by fat tissue, to in mice. What's more, they show that treatments designed to block its action improves the animals' sensitivity to insulin.

"Clearly, this finding could be a big development for understanding the side effects of obesity," said Lluis Fajas of INSERM in France. "It offers a new target for therapy and new hope for subjects to improve their pathology."

Fat tissue known as white adipose tissue (WAT) is primarily involved in energy storage in the form of triglycerides and energy release in the form of free fatty acids, Fajas' team explained. However, WAT is more than a fat storage organ; it also secretes numerous other factors with roles in both health and disease.

In the new study, the researchers show that CXCL5 is one of those factors. The chemokine is expressed at high levels in WAT, particularly in known as macrophages. Moreover, they report that CXCL5 is dramatically increased in the blood of people who are obese compared to those who are lean. Those CXCL5 levels drop when obese people lose weight and are also lower in obese individuals that continue to respond to insulin than in those who are insulin resistant.

They further found that treatment with recombinant CXCL5 blocks insulin-stimulated glucose uptake in the muscles of mice. What's more, treatment of obese, insulin-resistant mice with either anti-CXCL5 neutralizing antibodies or drugs that block the receptor it triggers (known as CXCR2) reverses those symptoms. Mice lacking the CXCL5 receptor are also protected against obesity-induced insulin resistance. Overall, the findings show that CXCL5 produced by fat tissue "represents a link between obesity, inflammation, and insulin resistance."

Interestingly, they added, the CXCR2 receptor is active outside of muscle, in cells that line blood vessel walls and in the lung and intestine, for example. Therefore, increased CXCL5 circulating levels as observed in obesity could lead to other problems, including atherosclerosis and other inflammatory diseases.

"Studies aiming to elucidate the role of WAT-secreted CXCL5 in all these obesity-related pathologies are likely to be forthcoming in the near future," they wrote. "Inhibiting CXCL5 secretion or function in obese individuals may not only ameliorate their insulin sensitivity, but could also decrease the risk of developing other major obesity-related pathologies."

Source: Cell Press (news : web)

Related Stories

Recommended for you

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.