Genetic Variations May Give Clues to Intracranial Aneurysms

April 24, 2009,
Joseph Broderick, MD

(PhysOrg.com) -- An international study led by University of Cincinnati (UC) researchers has detected two genetic variations that could provide insight into why intracranial aneurysms develop.

Joseph Broderick, MD, chair of UC’s neurology department, is the principal investigator for the Familial Intracranial Aneurysm (FIA) study, a collaborative research effort of investigators throughout the United States, Canada, Australia and New Zealand. Sponsored by the National Institutes of Health, the study is examining genetic and other environmental risk factors for intracranial aneurysm.

The study’s findings will be presented at the American Academy of Neurology (AAN) 2009 annual meeting April 25-May 2 in Seattle by Dan Koller, PhD, of Indiana University, the statistical genetics center for the study.

Intracranial aneurysms are “blisters” which form within the of the . A rupture of an aneurysm may lead to subarachnoid hemorrhage, which occurs in about 20,000 people annually in the United States with 35 percent dying within the first 30 days. Most of the deaths from subarachnoid hemorrhage are due to rapid and massive from the initial bleeding, so prevention of aneurysm formation is important.

Identification of susceptible genes in the formation and rupture of intracranial aneurysms would help researchers understand how aneurysms develop and could lead to the development of improved screening, diagnosis and prevention.

In the study, 391 familial intracranial aneurysm cases selected from population-based studies in the Greater Cincinnati region were compared with 402 unrelated control cases. Significant association with intracranial aneurysm was observed for two genes, COL9A1 (type IX collagen) and PDE1A (phosphodiesterase 1A).

“Collagen is a common substance in our body that is important in blood vessels,” Broderick says. “And the phosphodiesterase gene affects the function of the arterial wall. So both are biologically very plausible genes as to why aneurysms develop and rupture. In addition, the variants that we found are relatively common in the population.”

The next step, Broderick says, is to replicate the study’s findings in another group of aneurysm cases and controls.

Provided by University of Cincinnati (news : web)

Related Stories

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.