SUMO protein guides chromatin remodeler to suppress genes

April 27, 2009

In an in vitro study, led by Grace Gill, PhD, Tufts University School of Medicine, researchers discovered how a protein called SUMO (Small Ubiquitin-related Modifier) guides an enzyme complex that alters the structure of chromatin to regulate expression of genes. Chromatin is a compacted mass of DNA and protein that make up chromosomes. The interaction between SUMO and the enzyme complex is of interest in the study of cancer and neurodegenerative diseases such as Alzheimer's, where aberrant gene expression and altered SUMO function are thought to be indicative of disease.

The called SUMO is known to chemically modify other proteins, called transcription factors, which in turn enables the meticulous regulation of genes. Gene regulation is a fundamental biological process that allows necessary genes to be turned on or off in specific cell types.

The researchers found that SUMO interacts with an enzyme complex (LSD1/CoREST/HDAC) that alters structure to regulate genes within cells. The researchers found that the interaction between SUMO and this enzyme complex is responsible for preventing aberrant expression. Aberrant is a common feature of cancer and other disorders and altered SUMO processes might contribute to neurodegeneration.

"We've only known for about 10 years that SUMO chemically modifies proteins. We have a good understanding of how SUMO modifies other proteins, but the actual mechanism of how this modification alters cell function is not well known. Our study uncovers a fundamental aspect of how SUMO works, which has implications for many diseases. Until now, SUMO and LSD1/CoREST/HDAC have not been studied together; we've found out how they work together to turn off certain ," says Gill.

The Gill Lab is continuing to investigate SUMO-dependent cell activity to delineate the complex genetic mechanisms that support gene regulation.

First author Jian Ouyang, PhD, is a postdoctoral associate in Gill's lab, formerly in the department of pathology at Harvard Medical School.

Senior author Grace Gill, PhD, is an associate professor at Tufts University School of Medicine and a member of the genetics and cell, molecular and developmental biology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts, formerly in the department of pathology at Harvard Medical School.

More information: Ouyang J, Shi Y, Valin A, Xuan Y, and Gill G. Molecular Cell. 2009 (April 24); 34(2): 145-154. "Direct Binding of CoREST1 to SUMO-2/3 Contributes to Gene-Specific Repression by the LSD1/CoREST1/HDAC Complex." Published online April 23, 2009, doi: 10.1016/j.molcel.2009.03.013

Source: Tufts University

Related Stories

Recommended for you

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

Novel harvesting method rapidly produces superior stem cells for transplantation

December 7, 2017
A new method of harvesting stem cells for bone marrow transplantation - developed by a team of investigators from the Massachusetts General Hospital (MGH) Cancer Center and the Harvard Stem Cell Institute - appears to accomplish ...

Inhibiting TOR boosts regenerative potential of adult tissues

December 7, 2017
Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.