Brain research shows past experience is invaluable for complex decision making

May 13, 2009,

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have shown that past experience really does help when we have to make complex decisions based on uncertain or confusing information. They show that learning from experience actually changes the circuitry in our brains so that we can quickly categorise what we are seeing and make a decision or carry out appropriate actions. The research is published today (13 May) in Neuron.

Lead researcher, Dr Zoe Kourtzi from the University of Birmingham, said: "What we have found is that learning from past experience actually rewires our brains so that we can categorise the things we are looking at, and respond appropriately to them in any context.

In selecting a course of action that is most likely to be successful, the brain has to interpret and assign meaning to inherently uncertain sensory information - being able to do this is vital for our survival! This ability is especially critical when we are responding and acting in relation to that are highly similar to each other. For example, this is what is happening when you are trying to recognise friends in a crowd or discern a from healthy tissue on a medical scan.

"We have shown that this learning process is not just a matter of learning the structure of the physical world - when I look at something I'm not just playing a game of 'snap' in my head where I try to match images to each other. In fact, areas in our brains are actually trained to learn the rules that determine the way we interpret sensory information.''

Dr Kourtzi and colleagues wanted to find out about the mechanisms that mediate flexible decision making through learning, which have so far not been well understood, despite it being fairly clear that successful decisions benefit from previous experience. They combined measurements of behaviour and brain signals to study how volunteers learned to discriminate between highly similar visual patterns and to assign them in different categories.

Volunteers used two different rules to assign visual patterns into categories. As a result, patterns belonging to the same category based on one of the rules could be members of different categories based on the alternate rule. "This flexible learning paradigm allowed us to test for brain changes related to the perceived rather than the physical similarity between visual patterns," explains Dr. Kourtzi. "Our use of brain imaging in combination with mathematical techniques enabled us to extract sensitive information about brain signals that reflected the participant's choice."

"What we've shown is that we don't just get better at the task of picking out a familiar face amongst a crowd, for example. Our results tell us that previous experience can train circuits in our brains to recognise perceived categories rather than simply the physical similarity between visual patterns," said Dr Kourtzi. "Based on what we found, we propose that learned information about categories is actually retained in brain circuits in the posterior areas of the brain. From there we think it is fed through to circuits in frontal areas that translate this information into flexible decisions and appropriate actions depending on the requirements and context of the task."

Dr Janet Allen, Director of Research, BBSRC said: "We have to be able to understand how healthy brains work before we can see what has gone wrong when a person's brain is affected by disease. This work also shows that the complex human has evolved an incredibly effective mechanism for making good decisions that lead to successful everyday actions - something that has surely been a significant evolutionary advantage."

Source: Biotechnology and Biological Sciences Research Council (news : web)

Related Stories

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

Playing high school football changes the teenage brain

November 16, 2018
A single season of high school football may be enough to cause microscopic changes in the structure of the brain, according to a new study by researchers at the University of California, Berkeley, Duke University and the ...

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet May 14, 2009
How to get a publication with minimum effort:
1. get 20 students to do something in the brain scanner
2. produce some vague speculations,
3. come to an obvious conclusion, like "experience helps in making decisions,"
4. profit

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.