Cell's split personality is a major discovery into neurological diseases

May 7, 2009,

Researchers at the Université de Montreal (UdeM) and the Montreal Neurological Institute (MNI), McGill University have discovered that cells which normally support nerve cell (neuron) survival also play an active and major role in the death of neurons in the eye. The findings, published this week in The Journal of Neuroscience, may lead to more streamlined therapies for a variety of acute and chronic neurological disorders, including glaucoma and retinal artery occlusion.

In many neurodegenerative diseases, a main factor that kills neurons is excessive levels of glutamate, the most abundant excitatory in many regions of the (CNS). Diseases that occur as a result of high glutamate levels include hypoxic-ischemic brain injury (stroke), trauma, seizures, various forms of dementia and neurodegeneration. For years, the main explanation for the toxic effects of glutamate is that it overexcites neuronal cells via activation of glutamate receptors and thereby kills them.

"The most interesting aspect of our study and the reason we are so excited is that the pathway leading to glutamate-induced nerve cell death involves another vital player - namely, glial cells," says Dr. Adriana Di Polo, neuroscientist at the UdeM. "Through careful experimentation we now know that glutamate activates signaling pathways in glial cells that then lead to neuronal death."

Glial cells are the most abundant cell type in the nervous system and are traditionally thought of as 'partner' cells to nerve cells providing support, nutrients and an optimal environment. However, this study indicates that glial cells also have a more sinister side that allows them to induce or exacerbate neuronal death in pathological conditions.

"Neuronal cell death induced by glutamate is a key step in a large number of injury and disease settings and this study is important because it provides a road-map for the cellular and molecular events that allow this to occur" says Dr. Philip Barker, neuroscientist at the MNI, "The fact that specific signaling events in glial cells are important for inducing neuronal cell death is surprising and suggests new therapeutic targets for conditions that involve excitotoxicity."

The findings of the MNI and UdeM study represent a paradigm shift from the main model of excitotoxicity that has been in place for many years. Until now, the central idea has been that glutamate, which is released upon injury, binds to and activates the glutamate receptors on neurons triggering massive calcium entry and cell death. However, clinical trials targeting glutamate receptors have been disappointing suggesting that these receptors play only a minor role in triggering neuronal death.

The study, supported by the Canadian Institutes of Health Research, focused on nerve cells in the retina which convey information from the retina to the brain along the optic nerve, and are the primary link between the retina and the brain. The death of these retinal neurons from excess glutamate causes vision loss in various neurodegenerative disorders including optic neuropathies.

By disrupting signaling events in surrounding glial cells, the researchers were able to protect the majority of these neurons, confirming that glial cell events play a key role in death triggered by glutamate. This new understanding of the excitotoxic cascade of nerve cell death provides clear targets for successful therapeutic intervention of a wide-range of neurological and neurodegenerative diseases.

Source: McGill University (news : web)

Related Stories

Recommended for you

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

Superagers' brains offer clues for sharp memory in old age

February 22, 2018
It's pretty extraordinary for people in their 80s and 90s to keep the same sharp memory as someone several decades younger, and now scientists are peeking into the brains of these "superagers" to uncover their secret.

Separate brain systems cooperate during learning, study finds

February 21, 2018
A new study by Brown University researchers shows that two different brain systems work cooperatively as people learn.

Schizophrenia a side effect of human development

February 21, 2018
Schizophrenia may have evolved as an "unwanted side effect" of the development of the complex human brain, a new study has found.

Cognitive benefits of 'young blood' linked to brain protein in mice

February 21, 2018
Loss of an enzyme that modifies gene activity to promote brain regeneration may be partly responsible for age-related cognitive decline, according to new research in laboratory mice by UC San Francisco scientists, who also ...

How the brain tells our limbs apart

February 21, 2018
Legs and arms perform very different functions. Our legs are responsible primarily for repetitive locomotion, like walking and running. Our arms and hands, by contrast, must be able to execute many highly specialized jobs—picking ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.