Gene therapy technique thwarts cancer by cutting off tumor blood supply

June 12, 2009

University of Florida researchers have come up with a new gene therapy method to disrupt cancer growth by using a synthetic protein to induce blood clotting that cuts off a tumor's blood and nutrient supply.

In mice implanted with human colorectal cells, tumor volume decreased 53 percent and cancer cell growth slowed by 49 percent in those treated with a gene that encodes for the artificial , compared with those that were untreated.

The research team, led by Dr. Bradley S. Fletcher, an assistant professor of pharmacology and therapeutics in the College of Medicine, created the so-called fusion protein to target another protein called tumor endothelial marker 8, or TEM8, which was recently found to be preferentially expressed in the inner lining of tumor vessels. Such differences in protein expression enable delivery of drug molecules to the cells that harbor these proteins.

"The protein we created did a very good job of homing to the tumor and binding," said Stephen Fernando, who recently completed his doctoral studies. "By targeting TEM8, we can potentially create a therapy against cancer."

The Fletcher group is the first to target through protein binding to TEM8. The findings, now available online, are featured on the cover of the June 15 edition of Cancer Research.

"If you can cut off the blood supply, then you can inhibit the tumor from growing -- there have been many attempts," said Brad St. Croix, director of the National Cancer Institute's Tumor Angiogenesis Section, whose group first identified the TEM genes that over-express in tumor endothelial cells. "The concept of targeting tumor blood vessels has been around for many years, but it's good that we're finally getting around to the stage where we can see the vessels being targeted therapeutically -- it's pretty exciting, I think."

St. Croix was not part of the current research team, but donated some experimental materials.

The UF group created a "fusion protein" -- part of which binds to TEM8, and the other which promotes thrombosis, or blood clotting -- and delivered genes that encode for it to the lungs of mice. The delivery vehicle was a transposon called Sleeping Beauty, a piece of DNA that can insert new genes stably and efficiently into a cell's genome.

The lungs then functioned as a factory to produce the protein that later found its way to the target cells in the tumor vessels.

"We felt that TEM8 was an ideal target because it was inside the vessel, preferentially expressed there and unique," Fletcher said.

In addition to promoting blood clots, the strategy also resulted in reduced vessel density, possibly by interfering with TEM8 function.

Fletcher's group previously applied the Sleeping Beauty transposon gene delivery method to the treatment of hemophilia and pulmonary hypertension and the prevention of lung transplant rejection in animal studies. After developing those three successful models, they looked for disease applications in which poor outcomes would be worth the risk associated with gene therapy.

"We felt that cancer was potentially a target," Fletcher said. " has a lot of risk associated with it, so you don't want to do it for diseases that are not life-threatening."

The group plans to come up with a method to increase the amounts of the thrombosis-inducing protein produced in the body, and test whether higher dosing leads to unintended blood clots.

They are also looking into ways to deliver the protein directly to the sites of interest, rather than through genes that later produce the protein, and apply the method in other areas such as prostate cancer. Other work will include the use of coated nanoparticles to detect tumors and deliver drugs or radiate heat to destroy cancer cells when bombarded by radio waves.

Source: University of Florida (news : web)

Related Stories

Recommended for you

Researchers unravel novel mechanism by which tumors grow resistant to radiotherapy

November 23, 2017
A Ludwig Cancer Research study has uncovered a key mechanism by which tumors develop resistance to radiation therapy and shown how such resistance might be overcome with drugs that are currently under development. The discovery ...

African Americans face highest risk for multiple myeloma yet underrepresented in research

November 23, 2017
Though African-American men are three times more likely to be diagnosed with multiple myeloma, a type of blood cancer, most scientific research on the disease has been based on people of European descent, according to a study ...

Encouraging oxygen's assault on iron may offer new way to kill lung cancer cells

November 22, 2017
Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers ...

One-size treatment for blood cancer probably doesn't fit all, researchers say

November 22, 2017
Though African-American men are three times more likely to be diagnosed with a blood cancer called multiple myeloma, most scientific research on the disease has been based on people of European descent, according to a study ...

One in four U.S. seniors with cancer has had it before

November 22, 2017
(HealthDay)—For a quarter of American seniors, a cancer diagnosis signals the return of an old foe, new research shows.

Combination immunotherapy targets cancer resistance

November 22, 2017
Cancer immunotherapy drugs have had notable but limited success because in many cases, tumors develop resistance to treatment. But researchers at Yale and Stanford have identified an experimental antibody that overcomes this ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 13, 2009
You may get the "right" results, but from the wrong
theory! Cells don't "EAT", they have no digestive tract! They receive energy by small "tubels" that only pass electrons and genes. The protien covering
DOES absorb neutrients, to itself alone!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.