Scientists Find Faster, Cheaper Way to Identify Cancer-Causing Genes

June 17, 2009

Researchers at the University of Virginia Health System have found a new way to study how genes function in living organisms, and their approach could substantially cut the time and costs that drug makers spend in searching for potential targets for new cancer therapies.

“A big problem in biology is that there are many thousands of . Testing the function of any one of them in a living organism, such as a mouse, has traditionally been slow and very expensive,” notes Ian Macara, PhD, professor of microbiology at UVA’s School of Medicine and co-author of a study published in the June 15 issue of Genes & Development. “The new technology is hundreds of times cheaper and many times faster than traditional approaches. While we used it to study the function of a specific breast-developing gene, our method can be replicated in screening for genes that can suppress tumors or cause cancer.”

In Genes & Development, UVA researchers describe how they isolated mammary gland from mice and then infected the cells with a virus that enabled the scientists to manipulate a particular gene and cause it to glow green. When transplanted in mice that had undergone mastectomies, the altered stem cells regenerated entire new breasts within a few months. Because the target gene glowed green, researchers could monitor its role in the development of the new breast.

The UVA study tracked Par3, a polarity protein that controls how cells acquire particular shapes, so that they have a top and a bottom. “When we shut off this gene, the stem cells had problems differentiating into the right types of cells, causing problems with mammary development. Interestingly, the glands that formed looked very much like early, pre-malignant tumor growths,” explains Luke Martin McCaffrey, PhD, a post-doctoral fellow in the Center for Cell Signaling at UVA and study co-author.

Par3’s function is of interest to cancer researchers and drug developers because the protein helps regulate the shape of epithelial cells, which can become malignant when deformed. Over 90 percent of solid tumors arise from epithelial cells, and early dissemination of transformed cells to distant sites is the leading cause of death from .

More information: http://genesdev.cshlp.org/content/23/12/1450.abstract

Related Stories

Recommended for you

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.