New study shows those blinded by brain injury may still 'see'

September 2, 2009

(PhysOrg.com) -- Except in clumsy moments, we rarely knock over the box of cereal or glass of orange juice as we reach for our morning cup of coffee. New research at The University of Western Ontario has helped unlock the mystery of how our brain allows us to avoid these undesired objects.

The study, led by Canada Research Chair in Visual Mel Goodale, lead author Chris Striemer and colleagues in Western's Department of Psychology, has been published in the current issue of the .

"We automatically choose a path for our hand that avoids hitting any obstacles that may be in the way," says Goodale. "Every day, we perform hundreds of actions of this sort without giving a moment's thought as to how we accomplish these deceptively simple tasks."

In the study, a patient who had become completely blind on his left side following a stroke to the main visual area of the was asked to avoid obstacles as he reached out to touch a target in his right - or 'good' - visual field. Not surprisingly, he was able to avoid them as any normal-sighted individual would.

Amazingly, however, when obstacles were placed on his blind side, he was still able to avoid them - even though he never reported having seen them.

"The patient's behaviour shows he is sensitive to the location of obstacles he is completely unaware of," Striemer says. "The patient seemed to be as surprised as we were that he could respond to these 'unseen' obstacles," Goodale adds.

These findings provide compelling evidence for the idea that obstacle avoidance depends on ancient visual pathways in the brain that appear to bypass the main visual areas that allow us to perceive the world. Thus, even when the part of the brain that gives us our visual experience is damaged, other parts of the brain still maintain a limited ability to use from the eyes to control skilled movements of the limbs.

Additional experiments in Goodale's lab at the world-renowned Centre for Brain & Mind have shown that these primitive visual pathways work only in real-time and do not have access to memories, even of the short-term variety. As an example, they provided an obstacle in the patient's blind field but delayed his reach by two seconds. With this short delay, he no longer showed any sensitivity to the object's location.

The study's results have important implications for our understanding of what gets lost and what gets spared following damage to the brain's main visual pathways, and point the way for new approaches to rehabilitation.

Source: University of Western Ontario

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.