Researchers examine mechanisms that help cancer cells proliferate

September 1, 2009,

A process that limits the number of times a cell divides works much differently than had been thought, opening the door to potential new anticancer therapies, researchers at UT Southwestern Medical Center report in the Aug. 7 issue of the journal Cell.

Most in the human body divide only a certain number of times, via a countdown mechanism that stops them. When the controlling process goes wrong, the cells divide indefinitely, contributing to .

The number of times a cell divides is determined by special segments of DNA called telomeres, which are located at the ends of each chromosome. Every time a cell divides, the telomeres get shorter. When they are reduced to a certain length, the cell stops dividing.

In the new study, UT Southwestern researchers used both normal and cancerous human cells to examine closely how telomeres behave during cell division.

As a cell prepares to divide into two new cells, its ladder-shaped DNA "unzips," creating two halves, each resembling a single upright of a ladder with a set of half-length rungs. Fresh then fills in the rungs and a second upright. This process creates two identical sets of that will be allotted between the two cells.

From earlier studies on model organisms such as yeast, scientists thought that all telomeres replicated late in the stage of overall DNA replication, and by the same processes. The new study suggests that telomeres replicate at various times during this stage, except for a final step that is not completed until the very end, via a different, unknown mechanism.

"Interfering with replication of telomeres might provide a way to halt uncontrolled spread of cancer cells," said Dr. Woodring Wright, professor of cell biology at UT Southwestern and co-senior author of the paper.

The researchers also examined an enzyme called telomerase, which "rebuilds" telomeres so they do not get shorter and signals the cell to stop dividing. Normally, telomerase is only active in cells such as stem cells and dividing immune cells, which must reproduce constantly.

But telomerase also has a dark side: When active in , it enables unlimited growth, a hallmark of cancer.

It had been thought that telomerase only works on the shortest telomeres in a cell, but in the new study, the UT Southwestern researchers found that telomerase rebuilds most or all of the telomeres in a cell for each division, not just the shortest ones, as had been thought.

"Understanding ways to inhibit this telomerase mechanism might lead to novel anticancer therapies," said Dr. Jerry Shay, professor of and co-senior author of the paper.

Clinical trials using a drug that blocks telomerase are already under way at UT Southwestern for lung cancer and chronic lymphocytic leukemia.

The new study was possible because the researchers developed a way to examine the very ends of telomeres after a single cell division. Previous research in the field required multiple cell divisions to detect such changes.

"Now that we can look at what telomerase is doing in a single cell-division cycle, there is potential for a tremendous number of follow-up studies," Dr. Wright said.

Source: UT Southwestern Medical Center (news : web)

Related Stories

Recommended for you

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Sep 02, 2009
Suspect those little "hairs" seen at the end of telomeres are the "shadow optics of electrons under mitochondria control. For mitosis one is chosen and fired to break a hydrogen bond to start
mitosis. Once all are used the cell dies.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.