Neurons found to be similar to Electoral College

September 14, 2009,

A tiny neuron is a very complicated structure. Its complex network of dendrites, axons and synapses is constantly dealing with information, deciding whether or not to send a nerve impulse, to drive a certain action.

It turns out that , at one level, operate like another complicated structure -- the United States, particularly its system of electing a president, through the Electoral College.

A new Northwestern University study provides evidence that supports the "two-layer integration model," one of several competing models attempting to explain how neurons integrate synaptic inputs. The findings are published in the journal Neuron.

In this model, each dendritic branch of a neuron receives and integrates thousands of electrical inputs, deciding on just one signal to send to the axon. The axon then receives signals from all the dendrites, much like electoral votes coming in from state elections, and a final decision is made. The result could be an output in the form of an impulse, or action potential, or no action at all.

"There are more than 100 billion neurons in the human brain, so detailed knowledge of individual neurons will lead to a better understanding of how the brain works, including the processes of and ," said Nelson Spruston, who led the research team. He is professor of neurobiology and physiology in the Weinberg College of Arts and Sciences at Northwestern.

Using , the researchers made a three-dimensional reconstruction of individual dendritic branches of mammalian hippocampal neurons with all their synapses. They found that the get progressively smaller, or weaker, between the origin of the dendrite's branch and its end. This distribution supports the two-layer integration model.

Output from each branch, rather than each synapse, is sent to the axon. This design of the neuron implies that local integration is very important to the cell. After information is integrated locally within a branch, there is a global integration within the axon.

"Each of these neurons is a complicated network in and of itself," said William Kath, an author of the study. He is professor of engineering and applied science in the McCormick School of Engineering and Applied Science and is co-director of the Northwestern Institute on Complex Systems.

More information: The paper is titled "Synapse Distribution Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons." In addition to Spruston and Kath, other authors of the paper are Yael Katz, Vilas Menon, Daniel A. Nicholson and Yuri Geinisman, all from Northwestern.

Source: Northwestern University (news : web)

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.