To regenerate muscle, cellular garbage men must become builders

September 22, 2009,
This microscopy image, taken ten days after injury, shows that the muscle fibres of normal mice (top) had re-grown, while in mice which couldn’t boost C/EBP production (bottom) there were still many fibres that had not regenerated (arrowheads), and the tissue had a number of scars (arrows).

For scientists at the European Molecular Biology Laboratory in Monterotondo, Italy, what seemed like a disappointing result turned out to be an important discovery. Their findings, published online this week in the journal Proceedings of the National Academy of Sciences (PNAS), provide conclusive proof that, when a muscle is injured, white blood cells called macrophages play a crucial role in its regeneration. The scientists also uncovered the genetic switch that controls this process, a finding that opens the door for new therapeutic approaches not only to sports injuries but also to diseases such as Duchenne muscular dystrophy.

Normally, macrophages - the known for engulfing and eliminating bacteria and other infectious agents - are drawn to areas of injury. Once there, they act as garbage men, eliminating the dead cells and releasing pro-inflammatory factors, fending off infection. After clearing up the debris, macrophages stop releasing those pro-inflammatory factors, and start making anti-inflammatory factors that promote repair in the damaged area. This shift from clearing debris to promoting building is known as macrophage polarization, and Claus Nerlov, Nadia Rosenthal and colleagues proved that it is essential for muscles to regenerate properly.

“There seems to be this point of no return”, says Rosenthal: “if macrophages don’t make this switch, then the won’t repair itself - you just end up with scar, instead of new tissue”.

Nerlov and his research group at EMBL were studying a protein called C/EBPb, whose production increases in response to inflammation. They had genetically engineered mice in which this boost in C/EBPb production was blocked, to see what effect this had on the development of the different cells involved in the immune system. To their dismay, the answer appeared to be ‘almost none’. The modified mice developed normally, and had normal blood cells - except their macrophages didn’t polarize. Although this result fell short of the scientists’ expectations of understanding how blood cells develop, it raised an interesting possibility in the context of Rosenthal’s research into muscle regeneration. If these mice could not repair muscle injuries properly, it would prove that macrophage polarization is indispensable for muscle regeneration.

The two groups teamed up to investigate how the ability to respond to muscle injury was affected in mice whose C/EBPb production boost had been blocked. Their findings proved that macrophages still migrated to the injured site and cleared the debris, but because they failed to make that all-important switch, the muscle didn’t repair properly, becoming scarred instead.

At a stroke, the EMBL scientists confirmed the importance of macrophages in repairing muscle tissue and discovered its genetic basis. Normally, inflammatory factors trigger an increase in C/EBPb production, which in turn activates genes that cause the macrophage to polarize.

“From a medical point of view, it would seem that the trick to improve muscle repair is finding a way to increase C/EBPb production and keep it high”, Nerlov concludes, adding “if we can now figure out exactly which key genes C/EBPb controls, that will give us even more potential targets.”

As well as investigating the other steps on this molecular pathway, the scientists are currently studying a possible role for macrophage polarization in repairing heart muscle, with a view to better understanding and treating heart disease.

More information: Ruffell, D., Mourkioti, F., Gambardella, A., Kirstetter, P., Lopez, R. G., Rosenthal, N. & Nerlov, C. A CREB-C/EBP cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair, PNAS online Early Edition, 21-25 September 2009

Provided by European Molecular Biology Laboratory (news : web)

Related Stories

Recommended for you

New retinal ganglion cell subtypes emerge from single-cell RNA sequencing

July 18, 2018
Single-cell sequencing technologies are filling in fine details in the catalog of life. Researchers at the University of Connecticut Health Center (UConn Health) and The Jackson Laboratory (JAX) have identified 40 subtypes ...

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

Scientists find malformations and lower survival rates in zebrafish embryos exposed to cannabinoids

July 16, 2018
Exposure to the main chemical components of cannabis has a detrimental effects on developing zebrafish embryos, according to a new study conducted by University of Alberta biologists.

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.