Glutamate can play key role in drug impact on brain

December 16, 2009

(PhysOrg.com) -- Addiction disorders of various kinds are a major health and social problem, and our knowledge of how the brain’s reward system functions needs to be enhanced. Uppsala researchers now shows an unexpected effect of the signal substance glutamate on the midbrain in mice. The study is published in the Web edition of Proceedings of the National Academy of Sciences, PNAS.

"We have found that a certain part of the brain’s reward system requires not only the signal substance dopamine, as was previously thought, but also " says Ĺsa Mackenzie, who directed the study at the Department of Neuroscience, Uppsala University.

Among other things, the dopamine nerve cells in the midbrain are important for the brain’s control of willed movements and for the brain’s “reward system.” The latter in turn is important for providing us with a feeling of pleasure and happiness, for example, when we have eaten, worked out, or been affirmed. The feeling itself is mediated by dopamine released from the midbrain’s dopamine-producing nerve cells to the brain’s limbic system.

But the reward system is also affected by addictive drugs, such as cocaine and amphetamine. Previous studies have shown that a small portion of dopamine cells in the reward system can also use, besides dopamine, the signal substance glutamate (neurotransmitter), and researchers have therefore suggested that these nerve cells “co-transmit” glutamate and dopamine. But it was not previously known what this entailed for the function of the brain.

To address this question, the researchers in the current study developed a special mouse model whose dopamine nerve cells lack the ability to both use and release glutamate. When they were treated with the dopamine-releasing substance amphetamine, a clear effect was observed. Normal mice responded, as expected, with increased activity and more stereotypical movements. On the other hand, the reaction in the model mice was significantly reduced, showing that a certain part of the reward system needs not only the signal substance dopamine, as was previously believed, but also glutamate.

"Thus when we take away the glutamate signaling, the brain’s reward system is numbed, which is extremely interesting", says Ĺsa Mackenzie.

The findings are robust and enhance our possibility of understanding how the , and diseases that affect it, is formed and how it functions. The researchers are now continuing their study of the involved to find out how important this system is for addiction.

"We hope our studies will ultimately provide relevant knowledge for an understanding of addiction mechanisms in humans," says Ĺsa Mackenzie.

The study, which was carried out in collaboration with colleagues at the Karolinska Institute and the University of Montreal, Canada, has been funded by Uppsala University, the Swedish Research Council, the Swedish Foundation, STINT, the Knut and Alice Wallenberg Foundation, the National Board of Health and Welfare, the Ĺhlén Foundation, and the Magnus Bergvall Foundation.

More information: VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Birgner, C., Nordenankar, K., Lundblad, M., Mendez, J.A., Smith, C., LeGrevčs, M., Galter, D., Olson, L., Fredriksson, A., Trudeau, L-E., Kullander, K., Wallén-Mackenzie, Ĺ.

Related Stories

Recommended for you

Our memory shifts into high gear when we think about raising our children, new study shows

December 15, 2017
Human memory has evolved so people better recall events encountered while they are thinking about raising their offspring, according to a new study conducted by researchers at Binghamton University, State University of New ...

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
not rated yet Dec 17, 2009
Does this suggest that recovering addicts would benefit from additional glutamate to swamp the dopamine rebound ??

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.