New computer model could lead to safer stents

December 7, 2009,

After suffering heart attacks, patients often receive stents designed to hold their arteries open. Some of these stents release drugs that are meant to halt tissue growth in arteries, but can have life-threatening side effects such as increasing the likelihood of blood clots and heart attacks.

Now a team of researchers in the MIT-Harvard Division of Health Sciences and Technology has developed a that explains why those drugs (which include rapamycin and its analogs as well as paclitaxel) can accumulate in the arteries and cause .

The model allows the scientists to predict, for the first time, drug distribution in branched arteries. Their findings explain why drugs can pile up in certain areas, depending on where the stent is placed relative to forks in the artery.

"By observing the arterial drug distribution patterns for various settings, we understood that drug released from the stent does not reach uniformly to all regions of the vessel and this non-uniformity depends on where the stent is placed in the artery as well as the that is entering the vessel," says Edelman.

More than one million patients in the United States receive drug-releasing stents per year.

The results, reported in PLoS One, could help stent developers design safer and more effective stents and raises the possibility of designing individualized stents for patients. It could aid the FDA in its approval process for .

More information: Kolachalama VB, Levine EG, Edelman ER (2009) Luminal Flow Amplifies Stent-Based Drug Deposition in Arterial Bifurcations. PLoS ONE 4(12): e8105. doi:10.1371/journal.pone.0008105

Source: Public Library of Science (news : web)

Related Stories

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

DNA gets away: Scientists catch the rogue molecule that can trigger autoimmunity

February 22, 2018
A research team has discovered the process - and filmed the actual moment - that can change the body's response to a dying cell. Importantly, what they call the 'Great Escape' moment may one day prove to be the crucial trigger ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.