Scientists discover first evidence of brain rewiring in children

December 9, 2009,
The left brain image shows the area of compromised white matter (blue area) among poor readers relative to good readers at the beginning of the study. The center brain image shows the area where the structural integrity increased (red/yellow area) among poor readers who received the instruction, and it is very similar to the initially compromised area. The right brain image shows that following the instruction, there were no differences between the good and poor readers with respect to the integrity of their white matter. Credit: Timothy Keller and Marcel Just

Carnegie Mellon University scientists Timothy Keller and Marcel Just have uncovered the first evidence that intensive instruction to improve reading skills in young children causes the brain to physically rewire itself, creating new white matter that improves communication within the brain.

As the researchers report today in the journal Neuron, imaging of children between the ages of 8 and 10 showed that the quality of — the brain tissue that carries signals between areas of grey matter, where information is processed — improved substantially after the children received 100 hours of remedial training. After the training, imaging indicated that the capability of the white matter to transmit signals efficiently had increased, and testing showed the children could read better.

"Showing that it's possible to rewire a brain's white matter has important implications for treating reading disabilities and other developmental disorders, including autism," said Just, the D.O. Hebb Professor of Psychology and director of Carnegie Mellon's Center for Cognitive Brain Imaging (CCBI).

Dr. Thomas R. Insel, director of the National Institute of Mental Health, agreed. "We have known that behavioral training can enhance . The exciting breakthrough here is detecting changes in brain connectivity with behavioral treatment. This finding with reading deficits suggests an exciting new approach to be tested in the treatment of mental disorders, which increasingly appear to be due to problems in specific brain circuits," Insel said.

Keller and Just's study was designed to discover what physically changes in the brains of poor readers who make the transition to good reading. They scanned the brains of 72 children before and after they went through a six-month remedial instruction program. Using (DTI), a new brain imaging technique that tracks water movement in order to reveal the microscopic structure of white matter, Keller and Just found a brain change involving the white matter cabling that wires different parts of the brain together.

"Water molecules that are inside nerve fibers tend to move or diffuse parallel to the nerve fibers," explained Keller, a CCBI research scientist and author of the first developmental study of compromised white matter in autism. "To track the nerve fibers, the scanner senses areas in which many water molecules are moving along in the same direction and produces a road-map of the brain's wiring."

Previous DTI studies had shown that both children and adults with reading difficulty displayed areas of compromised white matter. This new study shows that 100 hours of intensive reading instruction improved children's reading skills and also increased the quality of the compromised white matter to normal levels. More precisely, the DTI imaging illustrated that the consistency of water diffusion had increased in this region, indicating an improvement in the integrity of the white matter tracts.

"The improved integrity essentially increases communication bandwidth between the two brain areas that the white matter connects, by a factor of 10," Just said. "This opens a new era of being able to see the brain wiring change when an effective instructional treatment is applied. It lets us see educational interventions from a new perspective."

Out of the 72 children, 47 were poor readers and 25 were reading at a normal level. The good readers and a group of 12 poor readers did not receive the remedial instruction, and their brain scans did not show any changes. "The lack of change in the control groups demonstrates that the change in the treated group cannot be attributed to naturally occurring maturation during the study," Keller said.

Keller and Just also found that the amount of change in diffusion among the treated group was directly related to the amount of increase in phonological decoding ability. The children who showed the most white matter change also showed the most improvement in reading ability, confirming the link between the brain tissue alteration and reading progress.

Additional analyses indicated that the change resulted from a decrease in the movement of water perpendicular to the main axes of the underlying white matter fibers, a finding consistent with increased myelin content in the region. Although the authors caution that further research will be necessary to uncover the precise mechanism for the change in white matter, some previous findings indicate a role for electrical activity along axons in promoting the formation of myelin around them, providing a plausible physiological basis for intensive practice and instruction increasing the efficiency of communication among brain areas.

"We're excited about these results," Just said. "The indication that behavioral intervention can improve both cognitive performance and the microstructure of white matter tracts is a breakthrough for treating and understanding development problems."

Source: Carnegie Mellon University (news : web)

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.