Magnesium supplement helps boost brainpower

January 27, 2010

Neuroscientists at MIT and Tsinghua University in Beijing show that increasing brain magnesium with a new compound enhanced learning abilities, working memory, and short- and long-term memory in rats. The dietary supplement also boosted older rats' ability to perform a variety of learning tests.

Magnesium, an essential element, is found in dark, leafy vegetables such as spinach and in some fruits. Those who get less than 400 milligrams daily are at risk for allergies, asthma and heart disease, among other conditions. In 2004, Guosong Liu and colleagues at MIT discovered that magnesium might have a positive influence on and . They followed up by developing a new magnesium compound — magnesium-L-threonate (MgT) — that is more effective than conventional oral supplements at boosting magnesium in the brain, and tested it on rats.

"We found that elevation of brain magnesium led to significant enhancement of spatial and associative memory in both young and aged rats," said Liu, now director of the Center for Learning and Memory at Tsinghua University. "If MgT is shown to be safe and effective in humans, these results may have a significant impact on public health." Liu is cofounder of Magceutics, a California-based company developing drugs for prevention and treatment of age-dependent memory decline and Alzheimer's disease.

"Half the population of the industrialized countries has a magnesium deficit, which increases with aging. If normal or even higher levels of magnesium can be maintained, we may be able to significantly slow age-related loss of cognitive function and perhaps prevent or treat diseases that affect cognitive function," Liu said.

To understand the molecular mechanisms underlying this MgT-induced memory enhancement, the researchers studied the changes induced in functional and structural properties of synapses. They found that in young and aged rats, MgT increased plasticity among synapses, the connections among neurons, and boosted the density of synapses in the hippocampus, a critical brain region for learning and memory.

Susumu Tonegawa at MIT's Picower Institute for Learning and Memory helped carry out the initial behavioral experiments that showed that magnesium boosted memory in aged rats. Min Zhou's laboratory at the University of Toronto helped demonstrate the enhancement of synaptic plasticity in magnesium-treated rats.

This study not only highlights the importance of a diet with sufficient daily magnesium, but also suggests the usefulness of magnesium-based treatments for aging-associated , Tonegawa said. Clinical studies in Beijing are now investigating the relationship between body status and cognitive functions in older humans and Alzheimer's patients.

More information: "Enhancement of Learning and Memory by Elevating Brain Magnesium," Inna Slutsky, Nashat Abumaria, Long-Jun Wu, Chao Huang, Ling Zhang, Bo Li, Xiang Zhao, Arvind Govindarajan, Ming-Gao Zhao, Min Zhuo, Susumu Tonegawa and Guosong Liu in Neuron, published Jan. 28, 2010.

Related Stories

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
1 / 5 (1) Jan 27, 2010
Maybe the stimulant/learning enhancer Magnesium pemoline, of the 1960's, works the same way. Doses/kg were likely much smaller than the threonine salt. That might explain the mixed results at the time.
seneca
not rated yet Feb 01, 2010
Shouldn't all magnesium salts dissociate into ions in stomach acid? After then common magnesium mineral water could do the same job for your brain...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.