New therapeutic approach identified for kidney disease associated with lupus

January 25, 2010, Hospital for Special Surgery

Investigators have identified a new disease mechanism and therapeutic approach for a type of advanced kidney disease that is a common cause of complications in patients with lupus. The study was led by investigators at Hospital for Special Surgery and appears in the January 25 online Early Edition of the Proceedings of the National Academy of Sciences.

"The standard treatment for lupus is to block inflammation," said Lionel Ivashkiv, M.D., associate chief scientific officer at Hospital for Special Surgery in New York City. "This study suggests you might want to target the , a specific type of white blood cell involved in the disease."

For years, clinicians have known that kidney damage occurs in many patients with lupus, and they have known how the disease triggers the start of kidney disease. Little has been known, however, about one type of lupus kidney disease, proliferative crescentic disease that is associated with adverse outcomes and decreased survival. This type of kidney disease is characterized by abnormal proliferation (growth) of kidney cells that leads to irreversible damage to internal kidney structures that help filter waste and fluids from the blood. This advanced kidney disease leads to and it is an important cause of the need for dialysis and transplantation in lupus.

Previous studies have suggested that type I interferons are implicated in promoting the autoimmunity associated with lupus. "We were interested in understanding whether these interferons might work directly on the kidney," Dr. Ivashkiv said. "There is a lot of evidence that the interferons work on the immune system and we wanted to know how interferons affect kidney disease."

To investigate, researchers used a mouse model of lupus. By increasing interferon production, they caused advanced kidney disease to occur in the mice rapidly. "The mice are a strain that will get nephritis over time, but we injected the mice at the very onset of the disease thus causing a very accelerated pattern, so that the mice have complete renal failure in two to four weeks," Dr. Ivashkiv said. They then examined the changes that occurred during the development of the advanced kidney disease by drawing blood samples from the mice, and analyzing their kidneys, and analyzing the macrophages to determine their type, among other experiments.

In the type of kidney disease they were investigating, it has long been known that epithelial cells proliferating out of control form a kind of crescent. These crescent cells compress the glomerulus, the basic filtration unit of the kidney, and prevent it from functioning.

In their experiments, the investigators found that the development of these crescents was associated with infiltrating kidney macrophages that produced growth factors, and the infiltration of these was spurred by interferon type I. They also found that the type of macrophages involved were not the most common type of inflammatory macrophages but so called "alternatively activated macrophages" that are involved in wound healing and induce the proliferation of cells. This is what causes the proliferation and crescentic lesions in the kidney disease.

"This study suggests a new drug target. If you could understand how to target the macrophages and inhibit them or the growth factors that they produce, this might be a different approach to therapy," Dr. Ivashkiv said. "This is an emerging area. Prior to this study, a role of macrophages had just been identified in lupus kidney disease, and this is the first study showing alternatively activated macrophages are involved in proliferative crescentic disease."

Related Stories

Recommended for you

Ambitious global virome project could mark end of pandemic era

February 23, 2018
Rather than wait for viruses like Ebola, SARS and Zika to become outbreaks that force the world to react, a new global initiative seeks to proactively identify, prepare for and stop viral threats before they become pandemics.

Forecasting antibiotic resistance with a 'weather map' of local data

February 23, 2018
The resistance that infectious microbes have to antibiotics makes it difficult for physicians to confidently select the right drug to treat an infection. And that resistance is dynamic: It changes from year to year and varies ...

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Scientists gain new insight on how antibodies interact with widespread respiratory virus

February 22, 2018
Scientists have found and characterized the activity of four antibodies produced by the human immune system that target an important protein found in respiratory syncytial virus (RSV), according to new research published ...

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.