Researchers discover TB disease mechanism and molecule to block it

February 15, 2010

Indiana University School of Medicine researchers have identified a mechanism used by the tuberculosis bacterium to evade the body's immune system and have identified a compound that blocks the bacterium's ability to survive in the host, which could lead to new drugs to treat tuberculosis.

Zhong-Yin Zhang, Ph.D., Robert A. Harris Professor and chairman of the Department of Biochemistry and Molecular Biology, and his colleagues revealed the biochemical processes that TB bacteria employ to subvert macrophages - key infection-fighting cells - in this week's online early edition of the . They also described a compound they have synthesized - I-A09 - that blocked the TB bacterium's activity in laboratory tests.

About one-third of the world's population is infected with TB, a contagious disease that causes nearly 2 million deaths annually, according to the Centers for Disease Control and Prevention. Although medicines to treat TB are available, they must be taken for at least six months to fully eliminate all TB bacteria from the body. People who do not follow the lengthy treatment regimen can become sick and infectious with a more virulent form of the disease that is resistant to standard medicines.

The compound synthesized by the IU group is a proof of concept that a small molecule drug targeted against an essential virulent factor of the TB bacterium can be an effective strategy, Zhang said. If it can be developed into an approved drug, the result could significantly shorten treatment times for TB, he said.

The focus of the research was TB actions inside macrophages, which are infection fighting cells in the body's immune system. Macrophage cells' tools include the production of special proteins called cytokines to attack foreign invaders. Infected macrophages can also initiate a self-destruction mechanism called apoptosis, which signals other to mount a defense against the infection.

TB bacteria are able to disable the macrophage defenses by secreting virulent factors into the host. The IU team found that the actions of a particular virulent factor - a protein phosphatase enzyme called mPTPB - blocked both the production of the infection-fighting cytokines, and the macrophage's self-destruct system.

Using combinatorial chemical synthesis and high-throughput screening, the researchers developed the I-A09 compound, which successfully blocked the action of mPTPB. Tests involving live were conducted at the Institute of Research, University of Illinois at Chicago.

Currently, compound I-A09 is being evaluated in a TB animal model at the Johns Hopkins University School of Public Health. More potent forms of the I-A09 compound are being pursued by the IU team for possible future clinical testing, Dr. Zhang said.

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.