Cellular channel may open doors to skin conditions, hair growth

April 15, 2010

Skin and hair follicles are constantly renewed in the body, maintained by specialized stem cells. New research from Children's Hospital Boston identifies a small cellular channel that regulates skin and hair growth and that could be targeted with small-molecule drugs, potentially treating variety of skin conditions, as well as thinning hair or unwanted hair growth. Findings appear in the April 16 issue of Cell.

Several known factors regulate the growth and specialization of cells in the epidermis. Two key players are transforming growth factor alpha (TGF-alpha) and the receptor for epidermal growth factor (EGFR). Without them, mice have wavy hair; when they are over-active, mice are hairless and develop cancer. However, these growth factors don't make ideal targets for a drug treatment since they are found throughout the body, and any drug targeting them would have substantial side effects.

The new study, led by David Clapham, MD, PhD, of Children's Hospital Boston, and Haoxing Xu, PhD, of the University of Michigan, finds that another protein found mainly in skin, TRPV3, "supercharges" the TGF-alpha/EGFR pathway. When TRPV3 was knocked out, the mice had a thinner outer skin layer with a dry, scaly texture, and appeared to be a less intact, more permeable barrier. By comparison, the normal mice formed a thick, robust outer skin barrier, with more tightly linked, toughened cells (a process known as cornification).

The mice lacking TRPV3 also developed a wavy coat and curly whiskers. Clapham believes the waviness resulted from abnormal functioning of the epidermal cells at the base of the hair follicle, normally rich in TRPV3, causing the follicles to point in different directions and preventing them from smoothly extruding hair.

TRVP3 is an , a small pore that opens to admit into the cell. Experiments showed that it is activated by EGFR, causing an influx of calcium that triggers many signaling pathways inside the cell, including one that stimulates release of TGF-alpha. This, in turn, increases EGFR signaling, providing a positive feedback loop that "supercharges" the system. When TRPV3 was knocked out, TGF-alpha/EGFR signaling was impaired.

Clapham speculates that drugs that stimulate TRPV3 activity may offer a new approach to treating multiple skin conditions, such as burns, bed sores, eczema, psoriasis, itch, fungal infections and oral mucositis (a sloughing off of skin in the mouth due to cancer chemotherapy). It might also be possible to develop cosmetic treatments that make the skin more firm, pliable and youthful. "If you activate TRPV3, you might get thicker skin," he says.

On the flip side, reducing TRPV3 activity could curb uncontrolled cell growth in skin cancer. "Some skin cancers may be potentiated by TRPV3," says Clapham.

A more speculative possibility is that TRPV3 could be targeted to create or hair removal agents, he adds.

Unlike growth factors, which act in many tissues and can have significant side effects, TRPV3 is found mainly in skin keratinocytes, although it is also found in the brain. Because TRPV3 has also been found to play a role in pain sensation, pharmaceutical companies have already been developing small targeting it.

More information: Cheng X et al. TRP Channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 2010 Apr 16; doi:10.1016/j.cell.2010.03.013

Related Stories

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 15, 2010
TRPV3 is found mainly in skin keratinocytes, although it is also found in the brain.

I can see it now, a treatment for my hair loss that also makes affects my brain. Minor side effect? In my case that maybe so heh.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.