New data on the regulation of a protein that is altered in all cancers

April 20, 2010
This graphic compares a normal wing (left) and a wing without miRNA in the zone marked in blue/ Credit: (c) Lab M. Milán

In a study using the Drosophila, researchers at the IRB Barcelona, Spain, have discovered that the microRNA machinery controls the levels of Myc through the molecule Mei-P26, thereby conferring microRNAs unexpected importance.

In all cancers, whether in kidney, breast, lung, colon, skin or any other tissue, cells show high Myc protein levels. Excess Myc causes cells to multiply in an exaggerated manner, giving rise to the development of tumours. One of the most pressing questions about Myc is how healthy cells keep the expression of this protein in check. In a study using the Drosophila, researchers at the Institute for Research in Biomedicine (IRB Barcelona) headed by ICREA scientist Marco Milán have discovered that the microRNA machinery controls the levels of Myc through the molecule Mei-P26, thereby conferring microRNAs unexpected importance. The study is published this week in EMBO Journal.

MicroRNAs (miRNAs) are small that account for less than 1% of the human genome; however, they play a key role in cell function because they have the capacity to disable or modify a great number of genes. High levels of certain miRNAs cause cancer. In previous studies conducted in mice, it was demonstrated that the Myc protein controls the expression levels of miRNAs. Now scientists have discovered in Drosophila that miRNAs affect the levels of Myc. "We propose that there is a finely tuned mechanism by which miRNAs and Myc are mutually controlled", explains Milán. The researchers suggest that the cell uses this mechanism to maintain optimal levels of miRNA and Myc, indispensable for the proper functioning of the organism, while preventing their becoming dangerous.

Mei-P26, the key component

The researchers discovered this new by removing Drosophila's 150 miRNAs from a developing wing. Without miRNAs, they obtained a tissue with similar characteristics to that attained when Myc is removed: the wing is smaller and the cells are also smaller and do not divide well. "Myc is like an orchestra conductor that guides the growth of tissue, including healthy tissue, and since the wing characteristics in both cases were similar, we thought that the miRNAs and Myc were related; and we were right", explains Héctor Herranz, post-doc researcher fellow in Milan's lab and first author of the article.

The dissection of the molecular mechanism revealed that the key piece in the regulation of Myc by miRNAs is Mei-P26, a molecule known to target Myc in mice. Cells lacking miRNAs show increased Mei-P26 levels and decreased Myc expression. "We have closed the circle of this regulatory mechanism, positioning the miRNAs in the diagram".

Given that miRNAs, Mei-p26 and Myc have homologues in mice and humans, and alterations in the expression of these homologues cause tumours, the researchers propose that this same regulatory mechanism of Myc could be present in higher organisms. Confirmation of this notion would open up new avenues in the study of .

More information: Reference article: The miRNA machinery targets Mei-P26 and regulates Myc proteína levels in the Drosophila wing. Héctor Herranz, Xin Hong, Lidia Pérez, Ana Ferreira, Daniel Oliveiri, Stephen M Cohen and Marco Milán. EMBO Journal (2010) doi: 10.1038/emboj.2010.69

Related Stories

Recommended for you

One in five young colon cancer patients have genetic link

December 13, 2017
As doctors grapple with increasing rates of colorectal cancers in young people, new research from the University of Michigan may offer some insight into how the disease developed and how to prevent further cancers. Researchers ...

New strategy for unleashing cancer-fighting power of p53 gene

December 13, 2017
Tumor protein p53 is one of the most critical determinants of the fate of cancer cells, as it can determine whether a cell lives or dies in response to stress. In a new study published today in the journal Nature Communications, ...

Researchers develop test that can diagnose two cancer types

December 12, 2017
A blood test using infrared spectroscopy can be used to diagnose two types of cancer, lymphoma and melanoma, according to a study led by Georgia State University.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.