A mother's touch: Study shows maternal stimuli can improve cognitive function, stress resilience

May 4, 2010 by Tom Vasich, UC Irvine

(PhysOrg.com) -- UCI child neurologist and neuroscientist Dr. Tallie Z. Baram has found that maternal care and other sensory input triggers activity in a baby's developing brain that improves cognitive function and builds resilience to stress.

For an infant, a mother’s touch provides a feeling of security, comfort and love. But research at UC Irvine is showing that it does much more.

UCI neurologist and neuroscientist Dr. Tallie Z. Baram has found that caressing and other triggers activity in a baby’s developing that improves cognitive function and builds resilience to stress.

The finding contributes to growing knowledge about epigenetics, the study of how environmental factors can reprogram the expression of genes.

In a study published earlier this year in The Journal of Neuroscience, Baram and colleagues identified how sensory stimuli from can modify that control a key messenger of stress called corticotropin-releasing hormone.

In earlier work, Baram helped discover that excessive amounts of CRH in the brain’s primary learning and memory center led to the disintegration of dendritic spines, branchlike structures on neurons. Dendritic spines facilitate the sending and receiving of messages among brain cells and the collection and storage of memories.

“Communication among brain cells is the foundation of cognitive processes such as learning and memory,” says Baram, the Danette Shepard Chair in Neurological Sciences. “In several brain disorders where learning and similar thought processes are abnormal, dendritic spines have been found to be reduced in density or poorly developed.

“Because an infant’s brain is still building connections in these communication zones, large blasts or long-term amounts of stress can permanently limit full development, increasing the risk of anxiety, depression and dementia later in life.”

Her most recent study describes for the first time the cellular pathways of the epigenetic process by which maternal care reduces the expression of CRH in the hypothalamus. Detecting sensory input, DNA in in this stress-sensitive region activates a neuron-restrictive silencer factor, which limits CRH. Without the interference of excess stress-triggered CRH, neural dendrites in the hippocampus can fully develop, which leads to stress resilience.

“What’s noteworthy about this study is that it reveals that brain structure is influenced by the environment early in life, and especially by maternal care,” says Baram, whose research on early-life factors in neural development has fundamentally altered the understanding of disorders such as epilepsy.

“There has been a belief that the brain is hardwired — that once it’s established, it’s that way for life,” she says. “But we’re seeing that the brain is actually ‘softwired’ — that changes in stimuli alter the wiring — and that it’s not predestined to be a certain way. I find this fascinating.”

Related Stories

Recommended for you

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

Researchers solve mystery of how ALL enters the central nervous system

July 18, 2018
A deadly feature of acute lymphoblastic leukemia (ALL) is its invasion of the central nervous system.

Pregnancy history may be tied to Alzheimer's disease

July 18, 2018
A woman's history of pregnancy may affect her risk of Alzheimer's disease decades later, according to a study published in the July 18, 2018, online issue of Neurology, the medical journal of the American Academy of Neurology. ...

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.