How the parasite responsible for severe forms of malaria can resist a major antimalarial agent

May 5, 2010, CNRS
Different stages of Plasmodium falciparum inside red blood cells

French esearchers from CNRS, INSERM and Toulouse University Hospital have demonstrated how the parasite Plasmodium falciparum, which causes severe forms of malaria, is able to circumvent the action of artemisinin and its derivatives, which are today the first-line drugs used to treat this disease.

This study supplies some important findings that will enable a clearer understanding of the mechanisms of resistance to antimalarial drugs and the testing of novel in a context where the of parasites is of increasing concern. Published in the May 2010 issue of and Chemotherapy, this work was carried out in collaboration with the US National Institutes for Health (NIH).

Malaria still continues to kill nearly a million people each year throughout the world. There is no vaccine against this infectious disease caused by a parasite of the Plasmodium genus and propagated via the bites of certain mosquitoes. is the most pathogenic species, causing a high death rate. It accounts for more than 80% of cases of human malaria and is present in the tropical regions of Africa, Latin America and Asia.

For the past ten years, artemisinin (ART), a substance extracted from a Chinese plant, has become the first-line drug for malaria, particularly since other compounds have lost their efficacy. Its action against all strains of Plasmodium falciparum, including those resistant to other antimalarials, is the principal advantage of ART. Furthermore, its antimalarial activity is very rapid, and it has few adverse effects. Combining artemisinin with another antimalarial agents considerably reduces the risk of onset of resistance. For this reason, the WHO has for several years been recommending the systematic use of this compound and its derivatives in combination with other antimalarial agents. Artermisinin-based Combination Therapies (ACT) now constitute the most effective treatment for , achieving a 95% cure rate.

However, in July 2009, the first cases of resistance to artesunate, the ART derivative most widely used in ACT, were observed among patients in South-East Asia. It has therefore become essential to determine how Plasmodium falciparum is able to circumvent the action of ART and its derivatives.

Thus the team led by Françoise Benoit-Vical, senior INSERM researcher in the CNRS Laboratoire de Chimie de Coordination, sought to isolate ART-resistant strains in an experimental manner. This feat was achieved at the end of 2009 when the scientists managed to obtain a strain of Plasmodium falciparum that was resistant to this compound and some of its derivatives, and the first to be adapted to in vitro culture. By furthering their investigations, the team was able to demonstrate that this ART-resistant strain was able to survive in the presence of ART at a dose that was 7000 times higher than the IC50 on susceptible strains. In addition, this experimental strain shared certain traits with the resistant strains found in the field.

The researchers also identified and characterized a new mode of parasite resistance. To evade the action of ART, Plasmodium falciparum arrested its development and entered a so-called state of quiescence. It thus functioned at a slow metabolic rate until the drug was eliminated. This quiescence phenomenon was only observed in at the ring stage. In parallel, an analysis performed with a National Institutes of Health team suggested that the expression of some proteins involved in the cell cycle of Plasmodium falciparum might be modified in resistant strains. Further studies are planned to identify the genes responsible for the acquisition of ART resistance.

The scientists were thus able to demonstrate a novel resistance mechanism and now benefit from an important tool that will allow a clearer understanding of the mechanisms of resistance to antimalarial drugs; this will also enable the testing of different therapeutic options (new compounds, new therapeutic combinations, new targets, etc.).

More information: Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Witkowski B, Leličvre J, López Barragán MJ, Laurent V, Su XZ, Berry A, Benoit-Vical F. Antimicrobial Agents and Chemotherapy. Mai 2010.

Related Stories

Recommended for you

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.