Taking aim at metastatic lung tumors

June 14, 2010

A new study uses a sophisticated genomic analysis to unravel some of the complex cellular signals that drive the deadly invasive spread of lung cancer. The research, published by Cell Press in the June issue of the journal Cancer Cell, identifies specific molecules involved in the often fatal metastasis of a common type of non-small cell lung cancer (NSCLC) and uses this information to design effective therapeutic strategies.

"Previous cancer genomics studies have established a number of oncogene and tumor suppressor pathways as important for the initiation and maintenance of NSCLC," explains senior study author, Dr. Kwok-Kin Wong from the Dana-Farber Cancer Institute in Boston. "However, the molecular alterations necessary for invasion and metastases of NSCLC are less well-defined. Because metastasis causes much of the morbidity and incurability of cancer, there is an urgent need to elucidate the events underlying this biological process.

Dr. Wong and colleagues had recently shown that the loss of the Lkb1 in a significant population of lung tumors results in metastasis in mice. Although the Lkb1 gene has also been linked with about 30% of human lung cancers, the pathways responsible for the metastatic effects had not been identified. To gain insight into the signaling pathways that underlie Lkb1-deficient lung tumors, the research team performed a comprehensive analysis of the genomic and signaling protein signatures of primary and metastatic lung tumors.

Loss of Lkb1 in mouse and human lung cancer cells was associated with an increase in the activity of proteins that are known to modulate cell motility and adhesion. Importantly, combined pharmacological inhibition of these key regulatory proteins in Lkb1-deficient cells decreased and induced tumor regression.

"Our analyses of primary and metastatic Lkb1-deficient mouse lung tumors have shown that progression to metastatic is associated with unique gene and protein signatures," concludes Dr. Wong. "Importantly, our findings indicate that despite the complex transcriptional and signaling changes that occur in the setting of Lkb1 loss and progression of NSCLC, these tumors may still be addicted to isolated oncogenic events that can be successfully therapeutically targeted."

More information: Carretero et al.: “Integrative Genomic and Proteomic Analyses Identify Targets for Lkb1-Deficient Metastatic Lung Tumors.” Publishing in Cancer Cell 17, 547-559, June 15, 2010. DOI 10.1016/j.ccr.2010.04.026

Related Stories

Recommended for you

One in five young colon cancer patients have genetic link

December 13, 2017
As doctors grapple with increasing rates of colorectal cancers in young people, new research from the University of Michigan may offer some insight into how the disease developed and how to prevent further cancers. Researchers ...

New strategy for unleashing cancer-fighting power of p53 gene

December 13, 2017
Tumor protein p53 is one of the most critical determinants of the fate of cancer cells, as it can determine whether a cell lives or dies in response to stress. In a new study published today in the journal Nature Communications, ...

Researchers develop test that can diagnose two cancer types

December 12, 2017
A blood test using infrared spectroscopy can be used to diagnose two types of cancer, lymphoma and melanoma, according to a study led by Georgia State University.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.