Alzheimer's imaging study identifies changes in brain's white matter

June 28, 2010, University of Kentucky

Scientists at the University of Kentucky's College of Medicine have identified changes in the brains of normal individuals at high risk for Alzheimer's disease that could prove important for early detection of the disease.

The research, led by Brian Gold, associate professor of anatomy and neurobiology, focused on the brain's , which forms the majority of deep parts of the brain and consists primarily of myelinated nerve cell processes, or axons. These myelinated axons serve to connect the brain's regions, which contain nerve cell bodies.

"The brain's white matter can be thought of as a set of telephone wires which enable communication between gray matter 'thinking regions'," Gold said.

Previous studies have demonstrated decline in both gray and white matter tissue types in individuals with Alzheimer's. In the present study, the authors sought to determine which of these changes are present in normal seniors at high risk for Alzheimer's disease, a likely target group for emerging interventions.

The high-risk group consisted of individuals whom have both genetic and family risk factors for Alzheimer's disease but do not yet show cognitive changes. The low-risk control group consisted of individuals who had neither risk factor but were similar to the high-risk group in terms of age, education level and .

The study used several (MRI) techniques to assess the integrity of gray matter and white matter in the high and low risk groups. In particular, a recently developed form of MRI called diffusion tensor imaging (DTI) was used to assess the integrity of the brain's white matter. This technique allows for assessment of the microstructural integrity of axons and their surrounding myelin.

Results indicated that the two groups did not differ in the tissue volumes of several gray matter regions know to contribute to memory function. However, the high-risk group showed decreased integrity in white matter tracts that inter-connect gray matter regions involved in memory function. Both the axonal and myelin integrity of these white matter tracts were reduced.

These data suggest that changes in white matter connections may be among the earliest brain changes in Alzheimer's disease, which may prove important for early detection by non-invasive imaging. In addition, the findings may have implications for the development of new preventative treatment interventions in Alzheimer's disease, which could attempt to protect axon and myelin integrity in seniors at risk for this neurological disorder.

More information: The findings were published in an article in the journal Neuroimage.

Related Stories

Recommended for you

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Insight without incision: Advances in noninvasive brain imaging offers improvements to epilepsy surgery

July 17, 2018
About a third of epilepsy sufferers require treatment through surgery. To check for severe epilepsy, clinicians use a surgical procedure called electrocorticography (ECoG). An ECoG maps a section of brain tissue to help clinicians ...

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

New ALS therapy in clinical trials—drug extends survival, reverses some neuromuscular damage in animals

July 16, 2018
About 20,000 people in the United States are living with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. The invariably fatal disease kills the nerve cells that control walking, eating and breathing. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.