Reducing Alzheimer's-related protein in young brains improves learning in Down syndrome animal model

June 3, 2010

June 3, 2010 - Reducing a protein called beta-amyloid in young mice with a condition resembling Down syndrome improves their ability to learn, researchers at UT Southwestern Medical Center have found.

"This preliminary study in the animal model raises the intriguing possibility that drugs that lower beta-amyloid levels might offer some benefit to children with Down syndrome," said Dr. Craig Powell, assistant professor of neurology at UT Southwestern and co-lead author of the study, which is available in , the Public Library of Science's online journal.

Down syndrome, a genetic disease that causes learning disabilities and physical problems, is caused by an extra copy of chromosome 21. This chromosome includes the genes for proteins that produce beta-amyloid, a protein that accumulates in the brains of people with Alzheimer's disease and is believed to contribute to .

Children with Down syndrome have increased normal levels of beta-amyloid in their brains, but it is unknown whether the increased levels affect intellectual abilities, Dr. Powell said. By age 40, nearly all adults with Down syndrome develop signs of Alzheimer's, with dementia developing in their 50s and 60s.

For the study, the researchers used mice with a genetic anomaly that closely mimics human . This type of mice have three copies of a stretch of genes, including those related to beta-amyloid production, and also display learning disabilities, including difficulties learning a standard water maze.

The scientists treated four-month-old genetically altered mice with DAPT, an that blocks gamma-secretase, an enzyme essential for beta-amyloid production. A four-day treatment lowered beta-amyloid levels by 40 percent and significantly improved the rodents' performance to the point that they learned the maze as quickly as normal mice.

Dr. Powell, however, cautioned that the blocked enzyme is involved in many brain functions besides creating beta-amyloid.

"Current gamma-secretase inhibitors may have untoward side effects," he said. "The goal now is to identify drugs that block the ability of gamma-secretase to create amyloid without blocking its ability to perform its other tasks."

Related Stories

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.