New measurement of DNA could help identify most viable embryos for IVF

June 28, 2010

(PhysOrg.com) -- Scientists from the University of Warwick and University Hospitals Coventry and Warwickshire NHS Trust, are the first to directly measure a specific region of DNA in human embryos.  The length of this region could be a quality marker for embryonic development.

Scientists from the University of Warwick and University Hospitals Coventry and Warwickshire NHS Trust, are the first to directly measure a specific region of DNA in human . The length of this region could be a quality marker for .

Researchers at the University of Warwick’s Warwick Medical School and University Hospital, Coventry, have measured telomeres, regions of repetitive DNA at the ends of a chromosome which protect it from deterioration. Telomeres shorten each time a cell divides and when telomere length becomes critically short, the cells die.

The research, published in Molecular Human Reproduction Journal, suggests that telomere length is shortest in the early stages of an embryo’s development, at around two days, and then lengthens just before implantation in the at five days. This lengthening may be essential for normal development, because short telomeres may not be enough to survive the many rounds of cell division that take place as embryos grow.

Lead authors Professor Geraldine Hartshorne, from the University of Warwick’s Warwick Medical School, and Sarah Turner, from University Hospital, Coventry, said this discovery could have implications for IVF treatment.

Professor Hartshorne said: “It has already been shown that artificially shortened telomeres cause problems in animal embryos. Human embryos are highly variable, and many of them cannot develop normally. We think that telomere length might one day be used to help diagnose which are the most viable embryos. We also know that shorten with oxidative stress, so telomere length might also provide a measure of the stressfulness of the culture systems that we use in IVF and their impact on embryos.”

The research project used oocytes and embryos donated by patients undergoing IVF treatment. Only material that could not be used for the patients’ own treatment was accessed for research.

Sarah Turner said: These results have given us plenty of new questions as well as answers. We now need to find out why telomere length is relatively short in early development. Our next steps are looking at single sperm and eggs to work out where the telomere length in early embryos is coming from.”

Related Stories

Recommended for you

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.