Sewage Raises West Nile Virus Risk

June 25, 2010, Emory University
Red outline shows Atlanta boundary

(PhysOrg.com) -- Sewage that overflows into urban creeks and streams during periods of heavy rain can promote the spread of West Nile Virus, an Emory study finds.

Sewage that overflows into urban creeks and streams during periods of heavy rain can promote the spread of , an Emory study finds.

The analysis of six years of data showed that people living near creeks with sewage overflows in lower-income neighborhoods of Southeast Atlanta had a seven times higher risk for West Nile virus than the rest of the city.

“The infection rate for mosquitoes, birds and humans is strongly associated with their proximity to a creek impacted by sewage,” says Gonzalo Vazquez-Prokopec, the Emory disease ecologist who led the study. “And if the creek is in a low-income neighborhood, we found that the entire cycle of infection is even higher.”

More affluent residents are more likely to have air-conditioning and use insect repellant and other protective measures, the researchers theorized.

The study, to be published by , was a collaboration of Emory, the , the Georgia Division of Public Health, the Fulton County Department of Health and Wellness, the National Institutes of Health, the Fogarty International Center and the University of Georgia.

More than 700 U.S. cities have combined , allowing wastewater to flow into urban waterways with minimal treatment. Video of an Atlanta CSO stream by Gonzalo Vazquez-Prokopec.

According to the , about 850 billion gallons per year of untreated mixed wastewater and storm water are discharged into U.S. urban waters, mainly through combined sewer overflow (CSO) systems that are used in more than 700 cities. Under normal conditions, CSO systems channel wastewater to a treatment plant before it is discharged into a waterway. During periods of heavy rain or snowmelt, however, the wastewater flows directly into natural waterways after only minimal chlorine treatment and sieving to remove large physical contaminants.

Most of the available data on the human health impacts of sewage-affected waterways focuses on the effects of exposures to bacteria, heavy metals, hormones and other pollutants.

Previous research by Emory’s Department of Environmental Studies has shown that the Culex mosquito - a vector for West Nile Virus and other human pathogens - thrives in Atlanta streams contaminated with CSO discharges. The mosquitoes become more populous, breed faster and grow larger than those found in cleaner waters.

“We wanted to know if the CSOs also raised the risk of getting infected with West Nile Virus,” said Uriel Kitron, chair of environmental studies and a co-author of the study.

An expert in geographic information systems (GIS) technology, Vazquez-Prokopec did a spatial analysis integrating the geographic coordinates of each CSO facility and associated streams, and six years of surveillance data on mosquito abundance and West Nile virus infections in mosquitoes, humans, blue jays and crows. (These birds are considered sentinels for the disease, due to their high West Nile Virus mortality and their proximity to humans.)

During 2001-2007, Georgia reported 199 human West Nile virus infections and 17 deaths. About 25 percent of the cases resided in Fulton County. The county forms the core of metropolitan Atlanta, and encompasses a range of socio-economic conditions, from the wealthiest neighborhoods in the state to those with the highest poverty rates in the country.

The analysis found that mosquitoes and birds near all seven of the CSO facilities and associated streams of Atlanta had significantly higher rates of West Nile virus infection than those near urban creeks not affected by CSOs. Humans residing near CSO streams also had a higher rate of infection if they lived in a low-income neighborhood with a greater proportion of tree canopy cover and homes built during the 1950s-60s. Residents of a wealthy northern Fulton County area did not experience an increase in West Nile virus cases, despite their proximity to two CSO streams.

In 2008, Atlanta completed an underground reservoir system designed to reduce the size and the number of CSOs. “In terms of mosquitoes, however, this remediation has the potential to make things worse instead of better by releasing slower flows of nutrient-rich effluent into streams,” Vazquez-Prokopec notes.

Emory scientists and public health officials are continuing to study West Nile virus and CSOs in Atlanta urban streams. Their goal is to help identify effective measures to limit the spread of the disease.

Related Stories

Recommended for you

Ambitious global virome project could mark end of pandemic era

February 23, 2018
Rather than wait for viruses like Ebola, SARS and Zika to become outbreaks that force the world to react, a new global initiative seeks to proactively identify, prepare for and stop viral threats before they become pandemics.

Forecasting antibiotic resistance with a 'weather map' of local data

February 23, 2018
The resistance that infectious microbes have to antibiotics makes it difficult for physicians to confidently select the right drug to treat an infection. And that resistance is dynamic: It changes from year to year and varies ...

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Scientists gain new insight on how antibodies interact with widespread respiratory virus

February 22, 2018
Scientists have found and characterized the activity of four antibodies produced by the human immune system that target an important protein found in respiratory syncytial virus (RSV), according to new research published ...

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.