New, sought-after standard for diagnosis within neurology

June 15, 2010

For the first time, researchers from Sweden and the US have succeeded in identifying the majority of the detectable proteins in the cerebrospinal fluid (CSF) of healthy human beings. The advance is expected to provide a valuable tool for diagnosis and research into diseases of the nervous system. The study is being published today in PLoS ONE.

Mapping the mix of 2,630 identified proteins in the CSF of healthy human beings may represent a turning point for research in neurological diseases. Until now, the lack of a clear picture of normal CSF made it impossible to fully assess how the fluid is affected by different disease conditions.

“Obtaining this tool represents a very important step,” says Jonas Bergquist, professor of analytic chemistry and at Uppsala University in Sweden and a researcher at the Uppsala Berzelii Technology Centre for Neurodiagnostics. “Our findings could serve as a representation of the normal case in connection with research into Alzheimer’s, ALS, Parkinson’s, multiple sclerosis and many other diseases.”

Knowledge of the overall of human CSF is important to the study of brain diseases. Until now, technological hurdles and a lack of samples from healthy individuals prevented the acquisition of such knowledge. The mapping of the protein composition of normal CSF by researchers at Uppsala University, in collaboration with American colleagues at UMDNJ-New Jersey Medical School and Pacific Northwest National Laboratory, involved 200 patients in Sweden initially suspected of suffering from but subsequently determined to be healthy and 20 healthy volunteers in the U.S.

A total of 2,630 proteins, 56 per cent of which are CSF-specific (i.e., unrepresented among the 3,654 proteins already identified by researchers in ) were identified. Multiple samples from ten individuals showed the mix of proteins to be surprisingly stable - no significant variation was found among samples taken from the same individual at different times. The study also identified sequence-specific markers, suitable for international research purposes, for each protein.

“The protein composition of CSF from patients with diseases like ALS and Alzheimer’s had already been determined by our research team and others,” says Jonas Bergquist. “A whole range of uses for the earlier findings will open up now that we have a normal representation that can be used for control purposes.”

The study was carried out using advanced methods (separation by means of immunoaffinity and liquid chromatography and elucidation by means of high-sensitivity/resolution mass spectrometry) at a unique technological platform in the U.S. Similar tools are now being implemented in the context of the SciLifeLab Uppsala project, another undertaking in which Jonas Bergquist is involved.

More information: Read the article in PLoS ONE: … journal.pone.0010980

Related Stories

Recommended for you

Image ordering often based on factors other than patient need: study

September 25, 2017
Do you really need that MRI?

Bone marrow concentrate improves joint transplants

September 25, 2017
Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional ...

How ketogenic diets curb inflammation

September 25, 2017
Ketogenic diets – extreme low-carbohydrate, high-fat regimens that have long been known to benefit epilepsy and other neurological illnesses – may work by lowering inflammation in the brain, according to new research ...

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.