Cancer stem cells are not one size fits all, lung cancer models show

July 1, 2010

Cancer stem cells have enticed scientists because of the potential to provide more durable and widespread cancer cures by identifying and targeting the tumor's most voracious cells. Now, researchers at Children's Hospital Boston and their colleagues have identified cancer stem cells in a model of the most common form of human lung cancer and, more significantly, have found that the cancer stem cells may vary from tumor to tumor, depending upon the tumor's genetic signature.

"Our study shows the cancer stem cell hypothesis is true in some lung cancers," said senior author Carla Kim, PhD, an assistant professor in the Stem Cell Program at Children's Hospital Boston and the department of genetics at Harvard Medical School (HMS). "It also shows, from one to another, the cancer are not the same."

Cancer stem cells are a subset of cancer cells believed to elude conventional treatments and eventually regenerate a tumor. Experimentally, they show up as cells that can be extracted from a tumor and transplanted to form a new tumor, from which the same tumor-propagating cells can again be extracted and transplanted with the same result. According to Kim, this is the first serial transplantation study to identify lung cancer tumor-propagating cells.

The findings, published in the July 2 Cell Stem Cell, connect the cancer stem cell hypothesis with molecular profiling of tumors (sometimes called personalized medicine). The results may allow researchers to combine stem cell biology with genetic typing to identify what drives the cancerous behavior of each patient's tumor and to develop new therapeutic targets.

In their study, Kim and her colleagues looked at mouse models of the three most commonly mutated genes in human lung cancer -- K-RAS and p53 (two genes predominantly mutated in adenocarcinomas of ) and one gene more often found mutated in non-smokers (EGFR). Led by HMS graduate student Stephen Curtis, the team identified cancer stem cells in a model combining the K-RAS and p53 oncogenic mutations. When the researchers serially transplanted the cancer stem cells from this model into the lungs of mice, new tumors formed.

The cancer stem cells in the K-RAS/ mice sported one telltale molecule (Sca1), found on the surface of a tiny 1 percent of all the tumor cells. In two other models of lung cancer, cells with that molecular marker were just as rare, but they failed to distinguish themselves as cancer stem cells. In the K-RAS model, all tumor cells were equally likely to propagate tumors. In the EGFR model, only the tumor cells lacking that molecule could propagate tumors.

"Our paper says the identity of the cancer stem cells could be different between one patient's lung tumor and another's," said Kim. "This will be crucial for researchers to consider as they design therapies to target specific cancer cell populations." The team did not test any drug interventions or human lung cancer samples. These are the next important steps, she said.

The findings may also help other researchers identify cancer stem cells by taking into account the cancer's . For patients, optimal treatment may rely on a combination of the tumor genotype and its tumor-propagating cell phenotype.

"Our idea is that, even though many patients' tumors may look similar, in order to offer truly personalized and effective targeted therapy, we need to know the genotype of a patient's tumor and successfully identify the cells that maintain that ," said Curtis.

Related Stories

Recommended for you

Researchers discover specific tumor environment that triggers cells to metastasize

November 21, 2017
A team of bioengineers and bioinformaticians at the University of California San Diego have discovered how the environment surrounding a tumor can trigger metastatic behavior in cancer cells. Specifically, when tumor cells ...

New study points the way to therapy for rare cancer that targets the young

November 21, 2017
After years of rigorous research, a team of scientists has identified the genetic engine that drives a rare form of liver cancer. The findings offer prime targets for drugs to treat the usually lethal disease, fibrolamellar ...

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.