Gene therapy breakthrough heralds treatment for beta-thalassemia

July 13, 2010

Italian scientists pioneering a new gene transfer treatment for the blood disorder β-thalassemia have successfully completed preclinical trials, claiming they can correct the lack of beta-globin (ß-globin) in patients' blood cells which causes the disease. The research, published in EMBO Molecular Medicine, reveals how gene therapy may represent a safe alternative to current cures that are limited to a minority of patients.

The disorder β-thalassemia, also known as Cooley's anemia, is caused when a patient cannot produce enough of the ß-globin component of haemoglobin, the protein used by red to carry oxygen around the body. The lack of ß-globin causes life threatening anemia, leading to severe damage of the body's major organs. The condition is most commonly found in Mediterranean, Middle Eastern and Asian populations.

"Currently treatments are limited to lifelong regular blood transfusions, and iron chelation to prevent fatal iron overload. The alternative is bone marrow transplantation, an option open to less than 25% of patients," said Dr Giuliana Ferrari from the San Raffaele Telethon Institute for in Milan. "Our research has focused on gene therapy: by transplanting genetically corrected stem cells we can restore haemoglobin production and overcome the disorder."

Diseases of the blood are good targets for gene therapy because it is possible to harvest stem cells from the patient's bone marrow. The team developed a tool to deliver the correct gene for ß-globin into these harvested cells, a viral vector they called GLOBE.

The cells can then be genetically modified with GLOBE to restore hemoglobin production before being re-administered back into the patient via intravenous injections. The important focus of this work was not only to show that GLOBE can restore haemoglobin production in human cells, but that this genetic transfer-based approach does not impair the biological features of the cells and is not associated with any intrinsic risk for the human genome.

This research is not only crucial for developing a cure for one disease, but as Dr David Williams from the Harvard Medical School says, it may advance the entire discipline of gene therapy research

"This work represents the kind of translational studies that are required to move human investigations forward but are often difficult to fund and publish," said Williams. "Considering the inherent difficulties accompanying human research, studies like those reported in EMBO Molecular Medicine are extremely important for moving the field forward." As the Milan based team can now correct the defective production of beta-globin in patients' blood cells the next step will be to place the corrected cells back into the patient, a step which has already proven successful in mice.

Successful gene therapies are the results of very long studies and our research represents the most comprehensive pre-clinical analysis ever performed on cells derived from thalassemic patients" concluded Ferrari. "We believe this study paves the way forward for the clinical use of genetically corrected using the GLOBE vector."

More information: Roselli E.A., Mezzadra R., Frittoli M.C., Maruggi G., Biral E., Mavilio F., Mastropietro F., Amato A., Tonon G., Refaldi C., Cappellini M.D., Andreani M., Lucarelli G., Roncarolo M.G., Marktel S. and Ferrari G. “Correction of ß-thalassemia major by gene transfer in hematopoietic progenitors of pediatric patients.” EMBO Molecular Medicine, Wiley-Blackwell, July 2010. DOI: 10.1002/emmm.201000083

Related Stories

Recommended for you

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.