Study sheds light on how psychiatric risk gene disrupts brain development

July 14, 2010

Scientists are making progress towards a better understanding of the neuropathology associated with debilitating psychiatric illnesses like bipolar disorder and schizophrenia. New research, published by Cell Press in the July 15 issue of the journal Neuron, reveals mechanisms that connect a known psychiatric risk gene to disruptions in brain cell proliferation and migration during development.

A research group led by Dr. Li-Huei Tsai from the Massachusetts Institute of Technology had recently discovered that the psychiatric risk gene, Disrupted in Schizophrenia-1 (DISC1), is an essential regulator of the proliferation of early (known as neural progenitor cells) via inhibition of a molecule called GSK3? and modulation of the Wnt signaling pathway. Disruptions in the Wnt pathway, which is critical for , have previously been linked with developmental defects and with various human diseases.

"Our recent finding was particularly interesting because one of the actions of lithium, the most common drug, is to inhibit GSK3?." explains Dr. Tsai. "Although DISC1 was one of the first risk genes to be identified and we know that it plays a key role in , the mechanisms by which DISC1 is regulated remain unknown." In this study, Dr. Tsai and colleagues built on earlier work and investigated how DISC1 is regulated during cortical development by looking for novel DISC1-interacting proteins.

The researchers discovered a key interaction between DISC1 and a protein called Dixdc1 which is the mammalian version of a nonmammalian Wnt signaling molecule. Dixdc1 and DISC1 interacted to regulate neural progenitor proliferation via modulation of Wnt/GSK3? signaling. Interestingly, although DISC1 and Dixdc1 were both essential for neural migration, the Wnt/GSK3? pathway was not required for migration. It appears as if Dixdc1 integrates DISC1 into Wnt-dependent and -independent signaling pathways.

"Our findings identify the novel Wnt signaling pathway gene, Dixdc1, as a critical regulator of DISC1 function during cortical development. This discovery suggests that Dixdc1 and DISC1 are involved in Wnt signaling at many levels in the nervous system and that mutations in DISC1 likely contribute to disease pathology by disrupting Wnt signaling during neural development and in the adult brain," concludes Dr. Tsai. "Future studies are needed to determine whether other candidate psychiatric risk genes also interact with Wnt signaling."

More information: Singh et al.: “Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development.” Publishing in Neuron 67, 33-48, July 15, 2010. DOI 10.1016/j.neuron.2010.06.002

Related Stories

Recommended for you

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

New study describes how dopamine tells you it isn't worth the wait

October 16, 2017
How do we know if it was worth the wait in line to get a meal at the new restaurant in town? To do this our brain must be able to signal how good the meal tastes and associate this feeling with the restaurant. This is done ...

A dietary supplement dampens the brain hyperexcitability seen in seizures or epilepsy

October 14, 2017
Seizure disorders—including epilepsy—are associated with pathological hyperexcitability in brain neurons. Unfortunately, there are limited available treatments that can prevent this hyperexcitability. However, University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.