Study shows how technology may improve treatment for children with brain cancer

July 18, 2010

A study presented today at the 52nd Annual Meeting of the American Association of Physicists in Medicine (AAPM) shows that children with brain tumors who undergo radiation therapy (the application of X-rays to kill cancerous cells and shrink tumors) may benefit from a technique known as "intensity modulated arc therapy" or IMAT.

This technique relies upon new features on the latest generation of X-ray therapy equipment that allow X-ray sources to be continuously rotated in any direction around a patient during treatment, potentially increasing the number of directions that the beams come from.

The study, which was conducted by medical physicists at St. Jude Children's Hospital in Memphis, TN, compared different treatment strategies including IMAT for nine children treated with radiation therapy for . It showed that IMAT could irradiate these tumors effectively while overall reducing the exposure to the surrounding tissue.

"Anything we can do to reduce that dose is obviously better," says St. Jude's Chris Beltran, who is presenting the study today in Philadelphia.

Treating cancer through radiation therapy can be complicated for certain types of tumors that are surrounded by sensitive tissue. Many brain tumors, for instance, are deep inside the skull and may require the X-rays to pass through critical structures -- the eyes, the ears, and parts of the brain itself.

The X-rays have the potential to damage these structures, which can lead to lasting side-effects from the treatment. Sending X-rays through the ear may damage the and lead to permanent hearing loss. Likewise, exposing the brain's temporal lobes to ionizing X-ray radiation can cause loss of mental acuity.

Because modern equipment for allows the source of X-rays to continuously move around the patient, says Beltran, "It gives you the freedom to choose where the beams come from."

In his study he showed that a treatment plan incorporating IMAT would help spare the sensitive surrounding tissues. Using common measures that relate radiation dosage to tissue damage, he predicts that the IMAT plan would cause less hearing loss and damage to the as compared to other treatment plans.

Related Stories

Recommended for you

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Drug yields high response rates for lung cancer patients with harsh mutation

October 18, 2017
A targeted therapy resurrected by the Moon Shots Program at The University of Texas MD Anderson Cancer Center has produced unprecedented response rates among patients with metastatic non-small cell lung cancer that carries ...

Possible new immune therapy target in lung cancer

October 18, 2017
A study from Bern University Hospital in collaboration with the University of Bern shows that so-called perivascular-like cells from lung tumors behave abnormally. They not only inadequately support vascular structures, but ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.