Disrupted circadian rhythm may cause triglycerides to rise

August 3, 2010

When the circadian rhythm gets thrown off, it could come with an unexpected side effect: high triglycerides. The discovery, based on studies in mice with a "broken clock," helps to explain the normal rise and fall in triglycerides, which happens at about the same time each day, according to researchers who report their findings in the August issue of Cell Metabolism.

"We show that the normal up and down [of triglycerides] is lost in clock mutants," said M. Mahmood Hussain of SUNY Downstate Medical Center. "They have high triglycerides all the time." An elevated triglyceride level is a risk factor for atherosclerosis and heart disease.

Several biological, physiological, and behavioral activities show a characteristic recurrence with 24-hour intervals attuned to sunrise and sunset, the researchers explained. That circadian rhythm is driven by the interaction of so-called .

In normal mice, plasma triglycerides double or triple over the course of the day, reaching their lowest point at night when the nocturnal animals eat and are most active, the new report shows. In clock mutants, triglyceride levels don't change; rather, they stay high all the time.

The researchers delved further into the mechanism linking the animal's internal clocks to triglycerides. They found that a core component of the circadian circuitry—a protein known as CLOCK—controls levels of another protein (called microsomal triglyceride transfer protein, or MTP) that helps to ferry triglycerides through the bloodstream. That control takes place via yet another transcription factor.

" and obesity are major metabolic disorders characterized by high plasma lipid concentrations," the researchers conclude. "Plasma lipids are tightly controlled by mechanisms regulating their production and clearance. Here, we show that light-entrained mechanisms involving clock genes also play a role in regulating plasma triglyceride."

If the findings in mice can be extrapolated to humans, it suggests that the effects of drugs designed to lower by acting on MTP might depend on when they are taken each day, the researchers said.

"The dose needed may vary depending on the time of day," Hussain said. "Now we can start to think about [the role of] drug timing in controlling disease states."

The findings also suggest that activities that disrupt the circadian rhythm—staying up until 2:00 a.m. or traveling overseas—might come with real consequences for lipid metabolism, he added.

Related Stories

Recommended for you

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

Study shows stress could be just as unhealthy as junk food

October 16, 2017
We all know that a poor diet is unhealthy, but a new BYU study finds that stress may just as harmful to our bodies as a really bad diet.

Childhood poverty, poor support may drive up pregnant woman's biological age

October 16, 2017
Pregnant women who had low socioeconomic status during childhood and who have poor family social support appear to prematurely age on a cellular level, potentially raising the risk for complications, a new study has found.

Blood vessel 'master gene' discovery could lead to treatments for liver disease

October 16, 2017
Scientists have identified a key gene in blood vessels which could provide a new way to assess and potentially treat liver disease.

Chronic inflammation plays critical role in sustained delivery of new muscular dystrophy therapy

October 16, 2017
Macrophages, a type of white blood cell involved in inflammation, readily take up a newly approved medication for Duchenne muscular dystrophy (DMD) and promote its sustained delivery to regenerating muscle fibers long after ...

Worms reveal secrets of aging: Researchers discover a conserved pathway that controls aging

October 13, 2017
Investigators at Case Western Reserve University School of Medicine and University Hospitals Health System have identified a new molecular pathway that controls lifespan and healthspan in worms and mammals. In a Nature Communications ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.