Stem cell versatility could help tissue regeneration

August 18, 2010, University of Edinburgh
This cross-section of skin shows rat thymic epithelial cells (green) contributing to hair follicles and sebaceous glands. Credit: EPFL

Scientists have reprogrammed stem cells from a key organ in the immune system in a development that could have implications for tissue regeneration.

Their research shows that it is possible to convert one stem type to another without the need for .

Researchers, who used rat models, grew stem cells from the thymus - an organ important for our immune systems - in the laboratory using conditions for growing hair follicle stem cells.

The team was from the Ecole Polytechnique Federale de Lausanne in Switzerland and the University of Edinburgh's Medical Research Council Centre for Regenerative Medicine.

When the cells were transplanted into developing skin, they were able to maintain skin and hair for more than a year.

The transplanted follicles outperformed naturally-produced hair follicle stem cells, which are only able to heal and repair skin for three weeks.

Once they were transplanted, the genetic markers of the cells changed to be more similar to those of hair follicle stem cells.

The research, published in the journal Nature, shows that triggers from the surrounding environment - in this case from the skin - can reprogramme stem cells to become tissues they are not normally able to generate.

Professor Yann Barrandon, Joint Chair of Stem Cell Dynamics at the Ecole Polytechnique Federale de Lausanne, Universite de Lausanne and Centre Hospitalier Universitaire Vaudois, who led the study, said: "These cells change because of the environment they come into contact with, the skin. In theory this operation could be recreated with other organs as well."

When an animal develops, embryos form three cellular or germ layers - ectoderm, endoderm and mesoderm - which then go on to form the body's organs and tissues.

Ectoderm becomes skin and nerves, endoderm becomes the gut and organs such as the liver, pancreas and thymus, and mesoderm becomes muscle, bones and blood.

Until now it was believed that germ layer boundaries could not be crossed - that cells originating in one germ layer could not develop into cells associated with one of the others.

This latest research shows that thymus cells, originating from the endoderm, can turn in to skin , which originate from the ectoderm origin. This suggests germ layer boundaries are less absolute than previously thought.

Dr Clare Blackburn, of the University of Edinburgh's Medical Research Council Centre for Regenerative Medicine, said: "It's not just that a latent capacity is triggered or uncovered when these stem cells come in to contact with skin. They really change track - expressing different genes and becoming more potent. It will be interesting to see whether microenvironments other than skin have a similar effect."

More information: 'Microenvironmental Reprogramming of Thymic Epithelial Cells to Skin Multipotent Stem Cells' by Barrandon, Paola Bonfanti, Stéphanie Claudinot, Alessandro W. Amici, Alison Farley, Clare Blackburn will be published in Nature on 19 August 2010.

Related Stories

Recommended for you

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

Blood biomarker can help predict disease progression in patients with COPD

July 12, 2018
Some patients with COPD demonstrate signs of accelerated aging. In a new study published in the journal CHEST researchers report that measuring blood telomeres, a marker of aging of cells, can be used to predict future risk ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.