Study discovers role of DNA methylation in multiple myeloma blood cancer

September 30, 2010

Sept. 30, 2010 — DNA methylation — a modification of DNA linked to gene regulation — is altered with increasing severity in a blood cancer called multiple myeloma, according to a study by Mayo Clinic and the Translational Genomics Research Institute (TGen).

And at specific points of DNA, "global hypomethylation," in which many genes lose the modification, may be associated with the step-by-step development of myeloma, according to a scientific paper published this month in the journal .

"This is the first study to show that hypomethylation occurs early in the development of multiple myeloma and increases through disease progression," said Dr. Bodour Salhia, a TGen researcher and the paper's lead author.

DNA methylation suppresses the expression of viral genes and other harmful elements incorporated over time into an individual's genome. In cancer, hypermethylation at certain genomic locations can turn tumor suppressing genes off, while hypomethylation in some instances may lead to the over-expression of , or those genes that give rise to cancer, and is linked to chromosomal instability.

However, there is still much to learn about the consequences of altered methylation.

In this study, researchers examined the methylation status of more than 1,500 CpGs. This is shorthand for C-phosphate-G, or and guanine — two of the four chemicals that comprise DNA — separated by a phosphate group, which links the two nucleosides together.

Researchers used a high-throughput universal bead array technology to examine CpG methylation at different stages of multiple myeloma, evaluating DNA methylation events associated with the progression of tumors.

They performed DNA methylation profiling analysis for more than 800 genes, including tumor suppressors, oncogenes, and genes involved in cancer-related . This process contrasts with previous studies that focused on the analysis of a single gene.

They found only a few genes that were hypermethylated, but importantly found many more hypomethylated genes, even in the earliest stages of multiple myeloma.

"Our data suggest that the overall degree of methylation may have some prognostic value, and further studies are needed to determine the functional and clinical significance of our findings," said Dr. John Carpten, Director of TGen's Integrated Cancer Genomics Division and the paper's senior author.

Dr. Salhia, added, "This study represents the most comprehensive examination to date of the role of methylation in multiple myeloma, and is expected to lead to an improved understanding of the biological mechanisms involved in the development of this type of cancer."

The study of falls under epigenetics — an emerging field in cancer research. Unlike the study of genetics, epigenetics refers to the study of gene activity that does not involve hardwiring alterations in the genetic code. These epigenetic events, which lay atop the genome, are an intricate and heritable mechanism of regulating the expression of .

"Understanding the full spectrum of epigenetic modifications will be key to improving the clinical management of the disease, and studies should continue to find new ways of treating multiple myeloma by targeting the multiple myeloma epigenome. This study also emphasizes that hypomethylating strategies may not be the next necessary steps in drug development." said Rafael Fonseca, M.D., Deputy Director of Mayo Clinic Cancer Center in Arizona.

Related Stories

Recommended for you

One in five young colon cancer patients have genetic link

December 13, 2017
As doctors grapple with increasing rates of colorectal cancers in young people, new research from the University of Michigan may offer some insight into how the disease developed and how to prevent further cancers. Researchers ...

New strategy for unleashing cancer-fighting power of p53 gene

December 13, 2017
Tumor protein p53 is one of the most critical determinants of the fate of cancer cells, as it can determine whether a cell lives or dies in response to stress. In a new study published today in the journal Nature Communications, ...

Researchers develop test that can diagnose two cancer types

December 12, 2017
A blood test using infrared spectroscopy can be used to diagnose two types of cancer, lymphoma and melanoma, according to a study led by Georgia State University.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.