Glucosamine causes the death of pancreatic cells

October 27, 2010

High doses or prolonged use of glucosamine causes the death of pancreatic cells and could increase the risk of developing diabetes, according to a team of researchers at Universite Laval's Faculty of Pharmacy. Details of this discovery were recently published on the website of the Journal of Endocrinology.

In vitro tests conducted by Professor Frédéric Picard and his team revealed that exposure causes a significant increase in mortality in insulin-producing , a phenomenon tied to the development of diabetes. Cell death rate increases with glucosamine dose and exposure time. "In our experiments, we used doses five to ten times higher than that recommended by most manufacturers, or 1,500 mg/day," stressed Professor Picard. "Previous studies showed that a significant proportion of glucosamine users up the dose hoping to increase the effects," he explained.

Picard and his team have shown that glucosamine triggers a mechanism intended to lower very high blood sugar levels. However, this reaction negatively affects SIRT1, a protein critical to cell survival. A high concentration of glucosamine diminishes the level of SIRT1, leading to cell death in the tissues where this protein is abundant, such as the pancreas.

Individuals who use large amounts of glucosamine, those who consume it for long periods, and those with little SIRT1 in their cells are therefore believed to be at greater risk of developing . In a number of mammal species, SIRT1 level diminishes with age. This phenomenon has not been shown in humans but if it were the case, the elderly—who constitute the target market for glucosamine—would be even more vulnerable.

"The key point of our work is that glucosamine can have effects that are far from harmless and should be used with great caution," concluded Professor Picard.

The results obtained by Picard and his team coincide with recent studies that cast serious doubt on the effectiveness of glucosamine in treating joint problems.

Related Stories

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.