'Lubricin' molecule discovered to reduce cartilage wear

October 21, 2010

A team of researchers in North Carolina has discovered that lubricin, a synovial fluid glycoprotein, reduces wear to bone cartilage. This result, which has implications for the treatment of sufferers of osteoarthritis, will be presented today at the AVS 57th International Symposium & Exhibition, taking place this week at the Albuquerque Convention Center in New Mexico.

Osteoarthritis is the most common form of arthritis, the degenerative joint disease. It mostly affects cartilage, the slippery tissue that covers the ends of bones where they meet to form a joint, and allows bones to glide over one another with limited friction and wear. causes cartilage to be broken down through a vicious cycle of mechanical and metabolic factors, and mechanical wear of cartilage is widely believed to contribute to this process. Eventually, the bones under the cartilage rub together, which can cause a tremendous amount of pain, swelling, and loss of motion at the joint.

Many studies have examined cartilage friction and lubrication with the goal of understanding cartilage wear prevention. Very few studies have focused on measuring wear directly, though, and until now no other studies have directly assessed the effects of synovial fluid constituents in mediating wear.

"We measured the effect of the synovial fluid protein lubricin on cartilage wear," explains research team member Stefan Zauscher, an associate professor of mechanical engineering and materials science, as well as biomedical engineering, at Duke University in Durham, N.C.

"Our measurements were performed at the surface level using an atomic force microscope with pressures and sliding speeds comparable to those seen in joints. The measurements show a direct link between lubricin in solution and reduction of cartilage wear," says Zauscher.

This indicates that lubricin is important for preservation physiologically, which may have important implications for treating or preventing joint disease in the future.

More information: The presentation, "Lubricin Reduces Microscale Cartilage Wear" is at 4:00 p.m. on Wednesday, October 20, 2010. ABSTRACT: www.avssymposium.org/Open/Sear … umber=TR+NS+SS-WeA-7

Related Stories

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.