MRI scans show structural brain changes in people at risk for Alzheimer's disease

November 16, 2010, Rush University Medical Center

New results from a study by neuroscientists at Rush University Medical Center suggest that people at risk of developing Alzheimer's disease exhibit a specific structural change in the brain that can be visualized by brain imaging. The findings may help identify those who would most benefit from early intervention.

The study will be presented at Neuroscience 2010, the annual meeting for the Society of Neuroscience in San Diego, Calif., on Wednesday, November 17.

"One of the main challenges in the field of Alzheimer's disease is identifying individuals at risk of developing Alzheimer's disease so that therapeutic interventions developed in the future can be given at the earliest stage before symptoms begin to appear," said Sarah George, a graduate student who co-authored the study with Leyla deToledo-Morrell, PhD, director of the graduate program in neuroscience at Rush University Medical Center and professor of neurological sciences at the Graduate College of Rush University.

"Our study has found that structural imaging techniques can be used to identify those at risk for developing Alzheimer's disease," said deToledo-Morrell.

For the study, experts from Rush followed individuals with mild cognitive impairment, which is thought to be a precursor of Alzheimer's disease and other forms of dementia. Those with mild cognitive impairment can exhibit known as amnestic mild cognitive impairment.

Researchers followed 52 individuals with amnestic over a period of six years. Twenty-three participants progressed to Alzheimer's disease.

Study participants underwent (MRI) screenings. The researchers used MRI to look for structural changes in the substantia innominata (SI), a region deep within the brain that sends chemical signals to the , the brain's outer layer that is largely responsible for reasoning, memory and other higher functions. Although no structural changes were found in the SI between the two groups, the MRI showed a thinning of the cortical areas that receive strong input from the SI in those who went on to develop Alzheimer's disease.

"Since we were able to distinguish those who progressed to Alzheimer's disease compared to those who remained stable, we believe that MRI techniques that examine patterns of structural alterations provide a sensitive biomarker for detecting risk of ," said George.

Related Stories

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Superagers' youthful brains offer clues to keeping sharp

February 22, 2018
It's pretty extraordinary for people in their 80s and 90s to keep the same sharp memory as someone several decades younger, and now scientists are peeking into the brains of these "superagers" to uncover their secret.

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.