Mysterious cells may play role in ALS

November 17, 2010, Johns Hopkins University

(PhysOrg.com) -- By tracking the fate of a group of immature cells that persist in the adult brain and spinal cord, Johns Hopkins researchers discovered in mice that these cells undergo dramatic changes in ALS, also known as Lou Gehrig’s disease.

A study reported November 17 online in Neuron shows that these , called NG2+, grow and expand rapidly during early life, eventually morphing into mature cells called oligodendrocytes. These “oligos” help speed the transmission of electrical impulses by providing insulation around nerve cells. This insulation, known as myelin, is disrupted in nervous system diseases such as multiple sclerosis.

The team tracked the fate of NG2+ cells in both normal mice and mice with a mutant form of the SOD1 gene that causes ALS. Using a stringent system that let them color-tag only NG2+ cells and then accurately locate these cells at various times in their development, the researchers found that NG2+ cells normally keep up a quiet program of dividing in adult tissues, sometimes replacing themselves and other times forming new oligos.

A slow and steady turnover of oligodendrocytes may be required throughout life to maintain myelin, says Dwight Bergles, Ph.D., associate professor in The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine. However, the normal developmental program of NG2+ cells goes awry in the spinal cords of ALS mice.

“In the model ALS mice we studied, it’s as though NG2+ cells step onto a high-speed treadmill,” Bergles says. “They undergo explosive division, morph more readily into abnormal-looking oligodendrocytes and then, uncharacteristically, those differentiated cells quickly die. The brakes that normally hold these cells in check appear to be gone in ALS.”

Of special note are provocative data showing this cell type as the most proliferating cell population in the spinal cords of ALS mice, churning out even more oligodendrocytes than in normal mice, says Shin Kang, Ph.D, a research associate in The Solomon H. Snyder Department of Neuroscience.

“This suggests there is significant oligodendrocyte death even before anything else degenerates,” he explains, “which identifies a new and important player in the progression of this disease.”

All this frenetic oligodendrocyte-generating activity takes place in the central nervous system’s gray matter where other cells — the motor neurons — are dying. A body of research shows that after acute trauma to the central nervous system, a short-term upswing in NG2+ activity takes place that may help reduce the extent of damage. Whether this change in behavior of NG2+ cells is protective, or accelerates the death of motor neurons in ALS, is not yet known.

Earlier studies in lab-dish cultures showed that NG2+ cells acted like stem cells, capable of turning into the major cell types in the nervous system, suggesting that they could be harnessed to replace cells that died as a result of injury or disease. However, the Hopkins team saw no evidence that the cells become anything other than oligodendrocytes in both healthy animals and those carrying the ALS mutant gene.

“Although we found that the potential of these cells is more limited than previously thought, it might be possible to coax them to adopt different fates,” Bergles says. “We only need to know what factors are restricting their development in the intact nervous system.”

“This goes much further than simply confirming a negative finding about these mysterious cells,” adds Kang. “We’ve answered a question, but the new observation about the overgrowth could lead to an entirely new understanding of ALS.”

Related Stories

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Superagers' youthful brains offer clues to keeping sharp

February 22, 2018
It's pretty extraordinary for people in their 80s and 90s to keep the same sharp memory as someone several decades younger, and now scientists are peeking into the brains of these "superagers" to uncover their secret.

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.