Scientists identify key protein controlling blood vessel growth into brains of mice

November 11, 2010, Stanford University Medical Center

One protein single-handedly controls the growth of blood vessels into the developing brains of mice embryos, according to researchers at the Stanford University School of Medicine. Understanding how the protein, a cellular receptor, functions could help clinicians battle brain tumors and stroke by choking off or supplementing vital blood-vessel development, and may enhance the delivery of drugs across the blood-brain barrier.

"The strength and specificity of this receptor's effects indicate that it could be a very important target," said Calvin Kuo, MD, PhD, associate professor of medicine. "It's really a spectacular phenotype. For a stroke, we might want to stimulate the function of this receptor; for a brain tumor, we might want to inhibit it."

Kuo is the senior author of the research, which will be published Nov. 12 in Science. Frank Kuhnert, PhD, a research associate in the Kuo lab, is the first author of the work. The research was supported in part by the Stanford Center for Children's .

The protein, called GPR124, is a member of a family of proteins called G-protein-coupled receptors that span the cellular membrane. Each receptor has a protein partner called a ligand that is secreted into the extracellular space — usually by a different cell. When a ligand binds to its receptor, it causes a cascade of events within that cell. In this way, the secreted ligand allows cells to "talk" to one another across distances to coordinate many aspects of development and metabolism.

There are hundreds of different G-protein-coupled receptors, and the functions of many have been identified. GPR124, however, is relatively unusual in that an exceptionally large portion of the protein projects out of the membrane into the extracellular space. Kuo and his colleagues, who study how tumors recruit to nourish and sustain them, were drawn to it because it has previously been shown to be involved in tumor blood vessels, though nobody knew specifically what it did.

The researchers began by looking to see where in an adult mouse the receptor was normally expressed. They discovered that it is found almost exclusively on the endothelial cells of the brain and the central nervous system. (Endothelial cells line blood vessels throughout the body and help blood to flow more smoothly.) When the researchers bred mice lacking the ability to express GPR124, they died as embryos after about 15 days of gestation. Looking at cross-sections of their brains, it was easy to see why.

"These embryos did not have any blood vessels entering their forebrains or developing spinal cords at all," said Kuo. "And the effects were very specific for the nervous system since all other organs had normal ." The forebrain includes the cerebral cortex, which plays a key role in memory, attention, consciousness and thought. In contrast, control mice embryos, with normal expression of GPR124, began developing brain blood vessels by about 11.5 days.

Interestingly, the researchers noticed that the timing of vessel development coincided with the formation of a physiological security checkpoint called the blood-brain barrier. The barrier, which is due in part to particularly tight junctions between individual epithelial cells in blood vessels in the central nervous system, ensures that only select molecules such as oxygen and glucose have access to the brain, and bars the entry of bacteria or larger molecules. Unfortunately, it can also block the entry of essential drugs to treat cancer or stroke, and in some diseases, such as multiple sclerosis, it inappropriately admits self-reactive immune cells that attack brain tissue.

To investigate the coincidence, Kuo and Kuhnert teamed up with graduate student Michael Mancuso to show that GPR124 expression is required in endothelial cells to regulate expression of a called Glut1 known to be involved in the development of the blood-brain barrier. The results suggest that GPR124 also plays a role in barrier development.

Kuo and Kuhnert next overexpressed GPR124 in the mice and followed their development. While the mice at first seemed normal, they began to develop large tangles of blood vessels in their forebrains as they aged. After about one year, nearly 70 percent of the mice displayed this kind of abnormal hypervasculature — but only in their brains. The results show that the action of GPR124 is highly specific for the central nervous system.

Still, the identity of the receptor's ligand remains a mystery. Kuo and his colleagues teamed up with researchers from Stanford's School of Engineering to narrow down the options. They used a microfluidic chamber — a technique that, among other things, allows the analysis of single-cell behavior — specially constructed by graduate student Amir Shamloo to investigate how mouse endothelial cells expressing GPR124 reacted to cells from different parts of the brain. Shamloo works in the lab of Sarah Heilshorn, PhD, assistant professor in materials science and engineering.

The researchers placed the cells in the middle of the chamber, and filled the channels on either side with these extracts from the forebrain — where the receptor's effects seem to be concentrated — or the hindbrain, where the receptor is not essential. They found that the endothelial cells only migrated toward the extract from the forebrain, much like the blood vessels grow toward and penetrate the embryonic brain during development.

"This was a key turning point," Kuo said of the collaboration. "We struggled for years to model the action of this receptor in vitro, but we couldn't do it without these microfluidic chambers."

In the future, the researchers plan to use mice in which they can toggle the expression of GPR124 on and off at will to examine its role in brain tumor development and stroke. They also hope to learn more about whether GPR124 is involved in the formation of the blood-brain barrier.

"There are a tremendous number of disorders that could be affected by GPR124 expression," said Kuo. "We're excited to begin those studies."

Related Stories

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 11, 2010
Now, I very specifically want see tests for this consideration .....with respect to Fluoride, aspartame, Roundup, GMO corn, etc, etc...

..and none of those tests done by major corporations or anyone who is even remotely associated with them.

That surely eliminates government testing in the US, I might add.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.