Novel approach to chronic pain relief

December 2, 2010, University of Bristol
Coping with chronic pain relief

(PhysOrg.com) -- An international team of scientists have found what they believe could be a novel approach to more effective, targeted relief of chronic pain caused by nerve injuries. The research, a collaboration involving the Universities of Toronto, Seoul, Korea and Bristol, is reported in the latest edition of the journal Science.

Previously, scientists have been able to show that a protein molecule known as PKM zeta is required to store memories. In the case of , there is a malfunctioning in the neural process that stores those memories, which prevents the from adapting the subsequent behavioral response which would ordinarily allow it to cope with the pain.

The connections between through synaptic pathways in the are somehow flawed, causing an individual to re-experience pain as the mental record of that pain persists.

This new research has detected the cause for this malfunction and in doing so, has identified a novel target for the treatment of neuropathic pain. By inhibiting PKM zeta in a part of the brain involved in the perception of pain in a mouse model, the international team of scientists have been able to eliminate the painful memory responsible for chronic pain.

Professor Graham Collingridge, from the University of Bristol’s MRC Centre for Synaptic Plasticity, the School of Physiology and Pharmacology, and part of the Bristol Neuroscience network, said: “If this translates to humans, it may be possible one day to treat some forms of chronic pain by inhibiting PKM zeta or other molecules involved in the storage of the painful memory. The challenge will be to target the drug so that it inhibits painful memories but not other forms of memory. “

By studying how brain connections operate in a part of the cortex involved in pain sensation in mice, the team found that the molecule PKM zeta actually serves to maintain pain-induced persistent changes in the brain, thereby prolonging the sensation of chronic pain.

The team combined biochemistry, electrophysiology and behavior to study the role of PKM zeta in the anterior cingulate cortex, a brain region known to be activated in humans during painful states. The identification of a molecular basis for chronic pain provides a framework for the development of more effective therapies in the future.

More information: Alleviating Neuropathic Pain Hypersensitivity by Inhibiting PKMzeta in the Anterior Cingulate Cortex, is published online by the journal Science, at the Science Express web site on Thursday 2 December 2010.

Related Stories

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.