New prion discovery reveals drug target for mad cow disease and related illnesses

December 1, 2010

The joy of a juicy hamburger could make a comeback thanks a new discovery by scientists from the University of Kentucky. In a new research report in the December 2010 print issue of The FASEB Journal, scientists found that a protein our body uses to break up blood clots speeds up the progress of prion diseases. This substance, called plasminogen, is a new drug target for prion diseases in both humans and animals.

"I hope that our study will aid in developing therapy for prion diseases, which will ultimately improve the quality of life of patients suffering from prion diseases," said Chongsuk Ryou, Ph.D., a researcher involved in the work from the University of Kentucky in Lexington. "Since prion diseases can lay undetected for decades, delaying the ability of the disease-associated prion protein to replicate by targeting the cofactor of the process could be a monumental implication for treatment."

To make this discovery, the researchers used simple test tube reactions to multiply disease-associated prion proteins. The reactions were conducted in the presence or absence of plasminogen. They found that the natural replication of the prions was stimulated by plasminogen in both human and animal cells.

"Rogue prions are one of nature's most interesting, deadly and least understood biological freakshows," said Gerald Weissmann, M.D., Editor-in-Chief of The . "They are neither virus nor bacteria, but they kill or harm you just the same. By showing how prions hijack our own clot-busting machinery, this work points to a new target for anti-prion therapy."

According to the U.S. National Institute of Allergy and , prion diseases are a related group of rare, fatal brain diseases that affect animals and humans. The diseases are characterized by certain misshapen protein molecules that appear in brain tissue. Normal forms of these prion reside on the surface of many types of cells, including , but scientists do not understand what normal prion protein does. On the other hand, scientists believe that abnormal prion protein, which clumps together and accumulates in brain tissue, is the likely cause of the brain damage that occurs. Scientists do not have a good understanding of what causes the normal to take on the misshapen abnormal form. Prion diseases are also known as transmissible spongiform encephalopathies, and include bovine spongiform encephalopathy ("mad cow" disease) in cattle; Creutzfeldt-Jakob disease in humans; scrapie in sheep; and chronic wasting disease in deer and elk. These proteins may be spread through certain types of contact with infected tissue, body fluids, and possibly, contaminated medical instruments.

More information: Charles E. Mays and Chongsuk Ryou. Plasminogen stimulates propagation of protease-resistant prion protein in vitro. FASEB J. December 2010 24:5102-5112; doi:10.1096/fj.10-163600

Related Stories

Recommended for you

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

Study of what makes cells resistant to radiation could improve cancer treatments

October 18, 2017
A Johns Hopkins University biologist is part of a research team that has demonstrated a way to size up a cell's resistance to radiation, a step that could eventually help improve cancer treatments.

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.