University of Hawaii at Manoa research focuses on congenital abnormality

December 9, 2010
This shows the transformation of the seventh cervical vertebra into a thoracic vertebra. Credit: Jinzeng Yang

Researchers at the University of Hawai'i at Manoa have developed innovative techniques that could have profound effects on congenital cervical vertebrae malformation research.

In the cover-featured research article of the November issue of Molecular Reproduction and Development, researchers looked into congenital cervical vertebrae malformation in humans that can cause neural problems and increase susceptibility to stillbirth in women. Research advancement on abnormal vertebrae development has been limited due to the lack of lab animals with taxonomic equivalency to humans (animal models), and restrictions on human subject research.

Leading the research effort was Dr. Jinzeng Yang, a molecular biologist in the College of and Human Resources' Department of Human Nutrition, Food and Animal Sciences. Researchers from Yang's laboratory have developed a new mouse model that reveals how patterning and developmental proteins can influence cervical vertebrae formation.

The uses a gene suppression technique that induces skeletal formation. The mice and their offspring appear normal but have striking cervical vertebrae formation. Yang's new gene suppression technique offers benefits, in this case, over the generated by complete gene removal (knockout mice), which cause mice to die shortly after birth.

Yang's laboratory has been studying myostatin, a protein playing a dominant role in reducing muscle mass. By genetically blocking the function of myostatin by its partial , mice were developed with 40 percent more muscle mass. Yang's graduate student Zicong Li, the first author of the publication, hypothesized that this gene suppression strategy would also work to stimulate skeletal development by inhibiting growth differentiation factor 11 (GDF11), a similar protein to myostatin, and produce live animals. Previously, the mice with complete removal of the GDF11 gene or knockout mice died shortly after birth. In collaboration with Dr. Stefan Moisyadi's laboratory in the UH Institute of Biogenesis Research, they generated the transgenic mice by using a new single plasmid system of piggyBac transgene delivery, which offers greater transposition rates and precision.

More information: The original research article is titled, "Transgenic Over-Expression of Growth Differentiation Factor 11 Propeptide in Skeleton Results in Transformation of the Seventh Cervical Vertebra into a Thoracic Vertebra." The publication is available online at onlinelibrary.wiley.com/doi/10.1002/mrd.21252/full.

Related Stories

Recommended for you

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Common antiseptic ingredients de-energize cells and impair hormone response

August 22, 2017
A new in-vitro study by University of California, Davis, researchers indicates that quaternary ammonium compounds, or "quats," used as antimicrobial agents in common household products inhibit mitochondria, the powerhouses ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Gut microbes may talk to the brain through cortisol

August 21, 2017
Gut microbes have been in the news a lot lately. Recent studies show they can influence human health, behavior, and certain neurological disorders, such as autism. But just how do they communicate with the brain? Results ...

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.