Treating deadly brain tumors by combining drugs

January 12, 2011

Lab studies show that combining drugs that target a variety of developmental cell signaling pathways may do a better job of killing deadly brain tumors than single drugs that target one pathway at a time, according to a new study by Johns Hopkins Kimmel Cancer Center researchers. The combined therapy approach apparently reduces tumor resistance to chemotherapy, they say.

The new research, described in the Dec. 15 issue of the journal Clinical Cancer Research, found that simultaneously blocking the so-called Notch and Hedgehog pathways, both critical in cell development, did more to decrease growth of human glioblastoma and tumor cell clusters compared with drugs aimed at just the Notch pathway. Most standard clinical treatments for glioblastoma currently target just one pathway.

“Our study indicates it may be necessary to simultaneously target multiple development signaling pathways to prevent cancers from becoming resistant to therapy,” says Charles Eberhart, M.D., Ph.D., the study’s senior author and associate professor of pathology, ophthalmology and oncology. “A single agent is not likely to work for prolonged periods.”

Glioblastoma is one of the most aggressive brain tumors, killing nearly every patient within two years. Even when the tumors initially seem to respond to medication, they generally develop resistance. This led researchers to speculate that tumors might compensate for therapy directed against one cancer cell development pathway by turning on a different one.

Eberhart and colleagues studied glioblastoma cell lines to investigate the effects of a gamma-secretase inhibitor, a medication that blocks the Notch receptor, on tumor growth. They also studied how Notch affects other pathways and evaluated the effects of combined therapy with a Hedgehog inhibitor.

They found that blocking just the Notch pathway in glioblastoma cells using the gamma-secretase inhibitor led to increased activity in both the Hedgehog and Wnt pathways, both important in . Further study showed that certain proteins involved in the Notch pathway interacted directly with proteins in the Hedgehog pathway, suggesting that Notch-targeted therapies can disrupt other cell signaling pathways that fuel tumors.

They next treated a group of glioblastoma cell lines with either the gamma-secretase inhibitor, a Hedgehog inhibitor, or both, finding that cell growth decreased slightly with either therapy alone, but by about 90 percent with dual therapy. The combined treatment also increased natural “programmed” cell death and decreased the ability of cells to form clusters, or colonies. In a group of glioblastoma samples taken during surgical removal of the human cancers, the combination therapy decreased by 50 to 80 percent the number of colonies formed and decreased the average size of cell clusters.

Clinical trials evaluating inhibitors of Hedgehog or Notch in a number of cancer types are currently under way at Johns Hopkins and several other sites across the country, Eberhart says. Further studies will examine the relationship among the Notch, Hedgehog and Wnt pathways in and look for other signaling processes that help tumors become resistant to therapy, he says.

Related Stories

Recommended for you

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

Microbiologists contribute to possible new anti-TB treatment path

October 23, 2017
As part of the long effort to improve treatment of tuberculosis (TB), microbiologists led by Yasu Morita at the University of Massachusetts Amherst report that they have for the first time characterized a protein involved ...

New study shows how cells can be led down non-cancer path

October 23, 2017
As cells with a propensity for cancer break down food for energy, they reach a fork in the road: They can either continue energy production as healthy cells, or shift to the energy production profile of cancer cells. In a ...

Proton therapy lowers treatment side effects in pediatric head and neck cancer patients

October 23, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional photon radiation, and it will result in similar outcomes with less impact on quality of life. Researchers from ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.